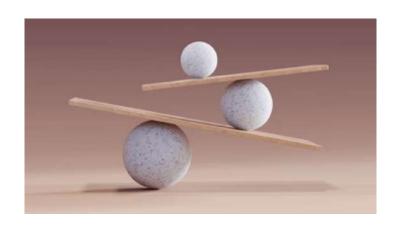


## Problem 11. «Unbalanced compression»

Michelle developed a new cryptographic hash function based on the Merkle-Damgård construction. A message is split into 224-bit blocks, while a padding scheme is applied to make sure the splitting occurs regardless the message's length. A compression function takes a message block as an input and results in a 128-bit output.


Algorithm 1 (see below) presents the compression function when it processes the first message block M. The block is divided into seven 32-bit integers  $M_0, \ldots, M_6$ . On the first message block, 32-bit integers A, B, C, D are initialized with constants and then during 40 rounds they are updated. Finally, the output is formed as a concatenation of A, B, C, D. The function  $[txyz \ e \ s]_F$  stands for  $t = (t + F(x, y, z) + e) \ll s$ , where "\eq s" is the circular shifting to the left by s bits position, while "+" is the addition modulo  $2^{32}$ . The functions  $[txyz \ e \ s]_G$  and  $[txyz \ e \ s]_H$  stand for t = (t+G(x,y,z)+e+0x5a827999)  $\ll s$ and  $t = (t + H(x, y, z) + e + 0x6ed9eba1) \ll s$ , respectively.

Also let  $F(x, y, z) = (x \wedge y) \vee (\neg x \wedge z)$ ;  $G(x, y, z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$ ;  $H(x, y, z) = x \oplus y \oplus z.$ 

In the pseudocode, "←" stands for assignment, while "=" stands for equality.

For example, "[DABC  $M_4$  7]<sub>F</sub>; D = K" means that D is updated by  $D \leftarrow (D+F(A,B,C)+M_4) \ll$ 7 and then it turns out that the updated D is equal to K, so  $K = (D + F(A, B, C) + M_4) \ll 7$ .

Michelle managed to find all preimages for several compression function's outputs using algebraic cryptanalysis. It turned out there are usually 0, 1, or 2 preimages in total for an output, i.e. there are outputs with no preimages. However, Michelle expected about  $2^{96}$  preimages for each output because the compression function maps  $2^{224}$  onto  $2^{128}$ . Please, help Michelle to find out why the compression function is unbalanced.



```
Algorithm 1 A compression function on the first 224-bit message block.
Input: 224-bit message block M.
Output: 128-bit output out.
  AA \leftarrow A \leftarrow 0x67452301; BB \leftarrow B \leftarrow 0xefcdab89
  CC \leftarrow C \leftarrow 0x98badcfe; DD \leftarrow D \leftarrow 0x10325476
  K \leftarrow 0xffffffff; P \leftarrow 0xa57d8668
  [ABCD P 3]_F [DABC P 7]_F [CDAB P 11]_F [BCDA M_0 19]_F
                                                                               \triangleright Rounds 1-4
  [ABCD P 3]_F [DABC P 7]_F [CDAB P 11]_F [BCDA M_1 19]_F
  [ABCD P 3]_F [DABC P 7]_F [CDAB P 11]_F [BCDA M_2 19]_F
  [ABCD \ M_3 \ 3]_F; A = K
                                                                 ▶ The updated A equals K
  [DABC M_4 7]_F; D = K
                                                                 ▶ The updated D equals K
  [CDAB M_5 11]<sub>F</sub>; C = K
                                                                 ▶ The updated C equals K
  [BCDA \ M_6 \ 19]_F
  [ABCD P 3]_G; A = K
                                                                 ▶ The updated A equals K
  [DABC P 5]_G; D = K
                                                                 ▶ The updated D equals K
  [CDAB P 9]_G; C = K
                                                                 ▶ The updated C equals K
  [BCDA M_3 13]_G
  [ABCD P 3]_G; A = K
                                                                 ▶ The updated A equals K
  [DABC P 5]_G; D = K
                                                                 ▶ The updated D equals K
  [CDAB P 9]_G; C = K
                                                                 ▶ The updated C equals K
  [BCDA M_4 13]_G
  [ABCD P 3]_G; A = K
                                                                 ▶ The updated A equals K
  [DABC P 5]_G; D = K
                                                                \triangleright The updated D equals K
                                                                \triangleright The updated C equals K
  [CDAB P 9]_G; C = K
  [BCDA \ M_5 \ 13]_G
                                                                                 ⊳ Round 28
  [ABCD \ M_0 \ 3]_G \ [DABC \ M_1 \ 5]_G \ [CDAB \ M_2 \ 9]_G \ [BCDA \ M_6 \ 13]_G
  [ABCD P 3]_H [DABC P 9]_H [CDAB P 11]_H [BCDA M_3 15]_H
  [ABCD P 3]_H [DABC P 9]_H [CDAB P 11]_H [BCDA M_5 15]_H
  A \leftarrow A + AA; B \leftarrow B + BB
  C \leftarrow C + CC; D \leftarrow D + DD
  out \leftarrow concatenation(A, B, C, D)
```