Problem 8. «Bijections for ciphers» A mapping $F: \{0,1\}^n \to \{0,1\}^n$, $F=(f_1,\ldots,f_n)$, is such that all coordinate Boolean functions f_i , $i=1,\ldots,n$, depend on k variables, $k \leq n$. Each function f_i is defined as follows: by a Boolean function g_i in k variables and an integer vector m_i of length k, containing the indices of the essential variables. **Example**: Let n = 3, k = 2, $g_1 = g_2 = g_3 = x_1x_2$, $m_1 = (2,3)$, $m_2 = (1,3)$, $m_3 = (1,2)$; then $f_1 = x_2x_3$, $f_2 = x_1x_3$, $f_3 = x_1x_2$, and the mapping F is given by the table: | x_1 | x_2 | x_3 | F | |-------|-------|-------|-----| | 0 | 0 | 0 | 000 | | 0 | 0 | 1 | 000 | | 0 | 1 | 0 | 000 | | 0 | 1 | 1 | 100 | | 1 | 0 | 0 | 000 | | 1 | 0 | 1 | 010 | | 1 | 1 | 0 | 001 | | 1 | 1 | 1 | 111 | **A problem**. Formulate conditions (necessary; sufficient; both) on the functions g_i and vectors m_i under which the mapping F is a bijection (an one-to-one function). A requirement: It should be not necessary to construct the truth table for F while checking the conditions.