Problem 9. «Finite-state machines»

Problem for a special prize!

Alice decided to invent some generator that produces a sequence of maximal possible period relatively to its state size. Since she knows about finite-state machine, her generator G is constructed using two such machines A_{1} and A_{2} :

- $A_{1}=\left(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}, g_{1}, f_{1}\right)$ with the state-transition function $g_{1}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ and the output function $f_{1}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}, n \geqslant 1$;
- $A_{2}=\left(\mathbb{F}_{2}, \mathbb{F}_{2}^{m}, \mathbb{F}_{2}, g_{2}, f_{2}\right)$ with the state-transition function $g_{2}: \mathbb{F}_{2} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ and the output function $f_{2}: \mathbb{F}_{2} \times \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}, m \geqslant 1$.

For any $t=1,2, \ldots$, let

1. $x(t)$ and $y(t)$ be the states of A_{1} and A_{2} respectively, $x(1)$ and $y(1)$ be the initial states;
2. $x(t+1)=g_{1}(x(t))$ be the next state of A_{1} and $u(t)=f_{1}(x(t))$ be the output bit of A_{1};
3. $y(t+1)=g_{2}(u(t), y(t))$ be the next state of A_{2} and $z(t)=f_{2}(u(t), y(t))$ be the output bit of A_{2}.

The sequence $z(1), z(2), z(3), \ldots$ is the output of the generator G. It is not difficult to see that it is eventually periodic whose the smallest period does not exceed 2^{n+m}.

Due to experiments, Alice noticed that the least period of the output sequence of G is less than 2^{n+m} if the Hamming weight of f_{1} is even. Help Alice to prove or disprove this conjecture.

Remark. Recall that the Hamming weight of a Boolean function is the number of arguments on which it takes the value one.

