

Problem for a special prize!

Alice decided to invent some generator that produces a sequence of maximal possible period relatively to its state size. Since she knows about finite-state machine, her generator G is constructed using two such machines A_1 and A_2 :

- $A_1 = (\mathbb{F}_2^n, \mathbb{F}_2, g_1, f_1)$ with the state-transition function $g_1 : \mathbb{F}_2^n \to \mathbb{F}_2^n$ and the output function $f_1 : \mathbb{F}_2^n \to \mathbb{F}_2, n \ge 1$;
- $A_2 = (\mathbb{F}_2, \mathbb{F}_2^m, \mathbb{F}_2, g_2, f_2)$ with the state-transition function $g_2 : \mathbb{F}_2 \times \mathbb{F}_2^m \to \mathbb{F}_2^m$ and the output function $f_2 : \mathbb{F}_2 \times \mathbb{F}_2^m \to \mathbb{F}_2, \ m \ge 1$.

$$x(t) \underbrace{ \begin{array}{c} A_1 \\ f_1 \\ g_1 \\ d \end{array}}_{x(t+1)} x(t+1) \\ y(t) \underbrace{ \begin{array}{c} A_2 \\ f_2 \\ g_2 \\ g_2 \\ d \end{array}}_{y(t+1)} x(t+1)$$

For any t = 1, 2, ..., let

- 1. x(t) and y(t) be the states of A_1 and A_2 respectively, x(1) and y(1) be the initial states;
- 2. $x(t+1) = g_1(x(t))$ be the next state of A_1 and $u(t) = f_1(x(t))$ be the output bit of A_1 ;
- 3. $y(t+1) = g_2(u(t), y(t))$ be the next state of A_2 and $z(t) = f_2(u(t), y(t))$ be the output bit of A_2 .

The sequence $z(1), z(2), z(3), \ldots$ is the output of the generator G. It is not difficult to see that it is eventually periodic whose the smallest period does not exceed 2^{n+m} .

Due to experiments, Alice noticed that the least period of the output sequence of G is less than 2^{n+m} if the Hamming weight of f_1 is even. Help Alice to prove or disprove this conjecture.

Remark. Recall that the Hamming weight of a Boolean function is the number of arguments on which it takes the value one.

