Problem 7. «A unique decoding»

Problem for a special prize!

Consider a binary error-correcting code C of length n. Recall that it is just a subset of \mathbb{F}_{2}^{n} and we transmit only elements of C over a noisy communication channel. Sending $x \in C$, some bits of x can be inverted in the channel. Getting $y \in \mathbb{F}_{2}^{n}$, a receiver decodes it into the nearest by Hamming metrics element of C. The Hamming weight $w t(x \oplus y)$ of $x \oplus y$ which is equal to the number of ones in $x \oplus y$ is the exact number of errors. Here \oplus states for XORing. Error-correcting codes are of great interest in communication theory and post-quantum cryptography.

Consider the principle of the maximum-likelihood decoding. Obtaining some $y \in \mathbb{F}_{2}^{n}$, we suppose that the number of errors happened, say d_{y}, is minimal possible, i.e.

$$
d_{y}=\min _{x \in C} w t(x \oplus y) .
$$

Next, let $\mathcal{D}(y)=\left\{x \in C: w t(x \oplus y)=d_{y}\right\}$. Finally, we decode y into any $x \in \mathcal{D}(y)$.
We are interested in all cases of codes for which $|\mathcal{D}(y)|=1$ for all $y \in \mathbb{F}_{2}^{n}$. In other words for such code every binary vector $y \in \mathbb{F}_{2}^{n}$ can be decoded in the unique way.

Q1 What codes C can provide this property?
Q2 What codes C that are linear subspaces of \mathbb{F}_{2}^{n} can provide this property?

Remarks.

1) An example. There are so-called perfect codes C that allow to divide \mathbb{F}_{2}^{n} into non-intersecting balls $B_{r}(x)=\left\{y \in \mathbb{F}_{2}^{n}: w t(x \oplus y) \leqslant r\right\}$ of some radius r centered in all $x \in C$. In other words, C is perfect if for some r it holds

$$
\bigcup_{x \in C} B_{r}(x)=\mathbb{F}_{2}^{n} \text { and } B_{r}(x) \cap B_{r}\left(x^{\prime}\right)=\emptyset \text { for } x \neq x^{\prime}, \text { where } x, x^{\prime} \in C
$$

It is not difficult to see that any such code provides $|\mathcal{D}(y)|=1$ for all $y \in \mathbb{F}_{2}^{n}$. But what else?
2) Some notions related to Voronoi diagrams can be helpful, see general mathematical definitions at https://en.wikipedia.org/wiki/Voronoi_diagram. In our problem we are looking for codes with non-intersecting discrete Voronoi cells for all $x \in C$.

