Problem 4. «Column functions»

Problem for a special prize!

Alice wants to construct a super strong symmetric cipher. On this way she solves some hard mathematical problems.

Consider 2^{n} pairwise distinct vectorial one-to-one functions, $G_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$, where $i=1, \ldots, 2^{n}$. Applying these functions we construct a special binary matrix and then try to determine some its properties.

For $n=2^{m}, m \geqslant 5$, define a binary matrix M of size $2^{n} \times n 2^{n}$ as follows. The i-th row, $i=1, \ldots, 2^{n}$, is a concatenation of values $G_{i}(0,0, \ldots, 0,0), G_{i}(0,0, \ldots, 0,1), \ldots$, $G_{i}(1,1, \ldots, 1,1)$. The columns of the matrix M can be interpreted as vectors of values of $n 2^{n}$ Boolean functions in n variables. We call them column functions.

Prove or disprove the following conjecture for at least one $m \geqslant 5$: for any matrix formed in the way described above there exist $2^{n / 2}$ column functions $f_{1}, \ldots, f_{2^{n / 2}}$ such that there is a nonzero Boolean function $f: \mathbb{F}_{2}^{2 n / 2} \rightarrow \mathbb{F}_{2}$ satisfying the following conditions:

- for every $x \in \mathbb{F}_{2}^{n}$

$$
f\left(f_{1}(x), f_{2}(x), \ldots, f_{2^{n / 2}}(x)\right)=0
$$

- for every $y \in \mathbb{F}_{2}^{2^{n / 2}}$ the value $f(y)$ can be calculated using not more than $2^{n / 2}$ addition and multiplication operations modulo 2 .

Example. Let $m=1$, then $n=2$ and we construct matrix of size 4×8. Consider one-to-one vectorial Boolean functions $G_{1}, G_{2}, G_{3}, G_{4}$ from \mathbb{F}_{2}^{2} to \mathbb{F}_{2}^{2} defined by their vectors of values $(0,1,2,3),(0,2,1,3)$, $(0,3,1,2)$ and ($3,2,1,0$) respectively. Then the resulting matrix is

$$
\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

We need to find $2^{n / 2}=2$ column functions. Let f_{1} and f_{2} be defined as the first and the second columns of the matrix respectively, and $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$ with the addition modulo 2. Then, $f\left(f_{1}(x), f_{2}(x)\right) \equiv 0$ since $f_{1}(x)=f_{2}(x)$ for any $x \in \mathbb{F}_{2}^{n}$.

Also, let f_{1} and f_{2} be the fifth and the sixth columns of the matrix. Then, giving $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ with the multiplication modulo 2 , we obtain $f\left(f_{1}(x), f_{2}(x)\right) \equiv 0$ since $f_{1}(x) \neq f_{2}(x)$ for any $x \in \mathbb{F}_{2}^{n}$.

In the both cases the functions f can be calculated using only one operation. Note that the existence of such f implies that f_{1} and f_{2} are algebraically dependent.

