Problem 7. «Algebraic cryptanalysis»

Bob decided to construct a new stream cipher BOB-0.1.
He used the binary key of length 8 , say $K=\left(k_{1}, \ldots, k_{8}\right)$. Then he generated the binary sequence β such that $\beta_{n}=k_{n}$ for all $n=1, \ldots, 8$ and for $n>8$ it is defined as $\beta_{n}=\beta_{n-1} \oplus \beta_{n-8}$. Then Bob constructed the secret sequence γ for XORing it with a binary plaintext. The sequence γ is generated by the following rule: $\gamma_{n}=\beta_{n} \cdot \beta_{n+2} \oplus \beta_{n+7}$ for $n \geqslant 1$.

Alice intercepted the eight secret bits of γ after the first 1200 missed bits. These bits are 00100001 . Is she able to recover the original key K ?

