## Problem 5. «Super dependent S-box»

Harry wants to find a super dependent S-box for his new cipher. He decided to use a permutation that is strictly connected with every of its variables. He tries to estimate the number of such permutations.

A vectorial Boolean function $F(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, where $x \in \mathbb{F}_{2}^{n}$, is a permutation on $\mathbb{F}_{2}^{n}$ if it is a one-to-one mapping on the set $\mathbb{F}_{2}^{n}$. Its coordinate function $f_{k}(x)$ (that is a Boolean function from $\mathbb{F}_{2}^{n}$ to $\mathbb{F}_{2}$ ), essentially depends on the variable $x_{j}$ if there exist values $b_{1}, b_{2}, \ldots, b_{j-1}, b_{j+1}, \ldots, b_{n} \in \mathbb{F}_{2}$ such that

$$
f_{k}\left(b_{1}, b_{2}, \ldots, b_{j-1}, 0, b_{j+1}, \ldots, b_{n}\right) \neq f_{k}\left(b_{1}, b_{2}, \ldots, b_{j-1}, 1, b_{j+1}, \ldots, b_{n}\right)
$$

In other words, the essential dependence on the variable $x_{j}$ of a function $f$ means the presence of $x_{j}$ in the algebraic normal form of $f$ (the unique representation of a function in the basis of binary operations AND, XOR, and constants 0 and 1).

An example. Let $n=3$. Then the Boolean function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{3}$ essentially depends on all its variables; but $g\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{2} \oplus 1$ essentially depends only on $x_{1}$ and $x_{2}$.

The problem. Find the number of permutations on $\mathbb{F}_{2}^{n}$ such that all their coordinate functions essentially depend on all $n$ variables, namely

Q1 Solve the problem for $n=2,3$.
Q2 Problem for a special prize! Solve the problem for arbitrary $n$.

