Problem 4. «Weaknesses of the PHIGFS»

A young cryptographer Philip designs a family of lightweight block ciphers based on a 4-line type-2 Generalized Feistel scheme (GFS) with better diffusion effect.

Its block is divided into four m-bit subblocks, $m \geqslant 1$. For better diffusion effect, Philip decides to use a (4×4)-matrix A over $\mathbb{F}_{2^{m}}$ instead of a standard subblocks shift register in each round. The family $\operatorname{PHIGFS}_{\ell}(A, b)$ is parameterized by a non-linear permutation $b: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2^{m}}$, the matrix A and the number of rounds $\ell \geqslant 1$. The one-round keyed transformation of $\operatorname{PHIGFS}_{\ell}(A, b)$ is a permutation g_{k} on $\mathbb{F}_{2^{m}}^{4}$ defined as:

$$
g_{k}\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=A \cdot\left(x_{3}, x_{2} \oplus b\left(x_{3} \oplus k_{1}\right), x_{1}, x_{0} \oplus b\left(x_{1} \oplus k_{0}\right)\right)^{T},
$$

where $x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{F}_{2^{m}}, k=\left(k_{1}, k_{0}\right)$ is a $2 m$-bit round key, $k_{0}, k_{1} \in \mathbb{F}_{2^{m}}$.
The ℓ-round encryption function $f_{k^{(1)}, \ldots, k^{(\ell)}}: \mathbb{F}_{2^{m}}^{4} \rightarrow \mathbb{F}_{2^{m}}^{4}$ under a key $\left(k^{(1)}, \ldots, k^{(\ell)}\right) \in$ $\mathbb{F}_{2^{m}}^{\ell}$ is given by

$$
f_{k^{(1)}, \ldots, k^{(\ell)}}(\mathbf{x})=g_{k^{(\ell)}} \ldots g_{k^{(1)}}(\mathbf{x}) \text { for all } \mathbf{x} \in \mathbb{F}_{2^{m}}^{4} .
$$

For effective implementation and security, Philip chooses two binary matrices $A^{\prime}, A^{\prime \prime}$ with the maximum branch number among all binary matrices of size 4 , where

$$
A^{\prime}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right), A^{\prime \prime}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

For approval, he shows the cipher to his friend Antony who claims that $A^{\prime}, A^{\prime \prime}$ are bad choices because ciphers $\operatorname{PHIGFS}_{\ell}\left(A^{\prime}, b\right), \operatorname{PHIGFS}_{\ell}\left(A^{\prime \prime}, b\right)$ are insecure against distinguisher attacks for all $b: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2^{m}}, \ell \geqslant 1$.

Help Philip to analyze the cipher $\operatorname{PHIGFS}_{\ell}(A, b)$. Namely, for any $b: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2^{m}}$ and any $\ell \geqslant 1$, show that $\operatorname{PHIGFS}_{\ell}(A, b)$ has
(a) ℓ-round differential sets with probability 1 ;
(b) ℓ-round impossible differential sets;
for the following cases: Q1 $A=A^{\prime}$; and $\mathbf{Q} 2 A=A^{\prime \prime}$. In each case, construct these nontrivial differential sets and prove the corresponding property.

Turn to the next page.

Remark. Let us recall the following definitions.

- Let $\delta, \varepsilon \in \mathbb{F}_{2^{n}}$ be fixed nonzero input and output differences. The differential probability of $s: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is defined as

$$
p_{\delta, \varepsilon}(s)=2^{-n} \cdot\left|\left\{\alpha \in \mathbb{F}_{2^{n}} \mid s(\alpha \oplus \delta) \oplus s(\alpha)=\varepsilon\right\}\right| .
$$

- If $s: \mathbb{F}_{2^{n}} \times K \rightarrow \mathbb{F}_{2^{n}}$ depends on a key space K, then the differential probability of s is defined as

$$
p_{\delta, \varepsilon}(s)=|K|^{-1} \sum_{k \in K} p_{\delta, \varepsilon}\left(s_{k}\right),
$$

where $s(x, k)=s_{k}(x), x \in \mathbb{F}_{2^{n}}, k \in K$.

- Let $\Omega, \Delta \subseteq \mathbb{F}_{2^{n}} \backslash\{0\}$ and Ω, Δ are nonempty. If $p_{\delta, \varepsilon}(s)=0$ for any $\delta \in \Omega, \varepsilon \in \Delta$, then (Ω, Δ) are impossible differential sets. But if

$$
\sum_{\delta \in \Omega, \varepsilon \in \Delta} p_{\delta, \varepsilon}(s)=1
$$

then (Ω, Δ) are differential sets with probability 1 . We call (Ω, Δ) trivial (impossible) differential sets if $\Omega \in\left\{\emptyset, \mathbb{F}_{2^{n}} \backslash\{0\}\right\}$ or $\Delta \in\left\{\emptyset, \mathbb{F}_{2^{n}} \backslash\{0\}\right\}$.

