

A young cryptographer Philip designs a family of lightweight block ciphers based on a 4-line type-2 Generalized Feistel scheme (GFS) with better diffusion effect.

Its block is divided into four *m*-bit subblocks,  $m \ge 1$ . For better diffusion effect, Philip decides to use a  $(4 \times 4)$ -matrix A over  $\mathbb{F}_{2^m}$  instead of a standard subblocks shift register in each round. The family  $\mathrm{PHIGFS}_{\ell}(A, b)$  is parameterized by a non-linear permutation  $b: \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$ , the matrix A and the number of rounds  $\ell \ge 1$ . The one-round keyed transformation of  $\mathrm{PHIGFS}_{\ell}(A, b)$  is a permutation  $g_k$  on  $\mathbb{F}_{2^m}^4$  defined as:

$$g_k(x_3, x_2, x_1, x_0) = A \cdot (x_3, x_2 \oplus b(x_3 \oplus k_1), x_1, x_0 \oplus b(x_1 \oplus k_0))^T,$$

where  $x_0, x_1, x_2, x_3 \in \mathbb{F}_{2^m}$ ,  $k = (k_1, k_0)$  is a 2*m*-bit round key,  $k_0, k_1 \in \mathbb{F}_{2^m}$ .

The  $\ell$ -round encryption function  $f_{k^{(1)},\ldots,k^{(\ell)}} \colon \mathbb{F}_{2^m}^4 \to \mathbb{F}_{2^m}^4$  under a key  $(k^{(1)},\ldots,k^{(\ell)}) \in \mathbb{F}_{2^m}^\ell$  is given by

$$f_{k^{(1)},\ldots,k^{(\ell)}}(\mathbf{x}) = g_{k^{(\ell)}}\ldots g_{k^{(1)}}(\mathbf{x})$$
 for all  $\mathbf{x} \in \mathbb{F}_{2^m}^4$ .

For effective implementation and security, Philip chooses two binary matrices A', A'' with the maximum branch number among all binary matrices of size 4, where

| A' = | (1)           | 1 | 0 | 1   | , A'' = | $\left( \begin{array}{c} 0 \end{array} \right)$ | 1 | 1 | 1   | 1 |
|------|---------------|---|---|-----|---------|-------------------------------------------------|---|---|-----|---|
|      | 1             | 0 | 1 | 1   |         | 1                                               | 1 | 1 | 0   | . |
|      | 0             | 1 | 1 | 1   |         | 1                                               | 1 | 0 | 1   |   |
|      | $\setminus 1$ | 1 | 1 | 0 , |         | $\setminus 1$                                   | 0 | 1 | 1 / | / |

For approval, he shows the cipher to his friend Antony who claims that A', A'' are bad choices because ciphers  $\operatorname{PHIGFS}_{\ell}(A', b)$ ,  $\operatorname{PHIGFS}_{\ell}(A'', b)$  are insecure against distinguisher attacks for all  $b \colon \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}, \ell \geq 1$ .

Help Philip to analyze the cipher  $\operatorname{PHIGFS}_{\ell}(A, b)$ . Namely, for any  $b \colon \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$  and any  $\ell \ge 1$ , show that  $\operatorname{PHIGFS}_{\ell}(A, b)$  has

- (a)  $\ell$ -round differential sets with probability 1;
- (b)  $\ell$ -round impossible differential sets;

for the following cases:  $\mathbf{Q1} \ A = A'$ ; and  $\mathbf{Q2} \ A = A''$ . In each case, construct these nontrivial differential sets and prove the corresponding property.

Turn to the next page.



nsucrypto@nsu.ru

## International Olympiad in Cryptography NSUCRYPTO'2022Second roundOctober 17-24General, Teams

**Remark.** Let us recall the following definitions.

• Let  $\delta, \varepsilon \in \mathbb{F}_{2^n}$  be fixed nonzero input and output differences. The differential probability of  $s: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$  is defined as

$$p_{\delta,\varepsilon}(s) = 2^{-n} \cdot |\{\alpha \in \mathbb{F}_{2^n} | s(\alpha \oplus \delta) \oplus s(\alpha) = \varepsilon\}|.$$

• If  $s: \mathbb{F}_{2^n} \times K \to \mathbb{F}_{2^n}$  depends on a key space K, then the *differential probability* of s is defined as

$$p_{\delta,\varepsilon}(s) = |K|^{-1} \sum_{k \in K} p_{\delta,\varepsilon}(s_k),$$

where  $s(x,k) = s_k(x), x \in \mathbb{F}_{2^n}, k \in K$ .

• Let  $\Omega, \Delta \subseteq \mathbb{F}_{2^n} \setminus \{0\}$  and  $\Omega, \Delta$  are nonempty. If  $p_{\delta,\varepsilon}(s) = 0$  for any  $\delta \in \Omega$ ,  $\varepsilon \in \Delta$ , then  $(\Omega, \Delta)$  are *impossible differential sets*. But if

$$\sum_{\delta \in \Omega, \varepsilon \in \Delta} p_{\delta, \varepsilon}(s) = 1,$$

then  $(\Omega, \Delta)$  are differential sets with probability 1. We call  $(\Omega, \Delta)$  trivial (impossible) differential sets if  $\Omega \in \{\emptyset, \mathbb{F}_{2^n} \setminus \{0\}\}$  or  $\Delta \in \{\emptyset, \mathbb{F}_{2^n} \setminus \{0\}\}$ .



Page 5 from 13

nsucrypto@nsu.ru