Problem 8. «Public keys for e-coins»

Alice has n electronic coins that she would like to spend via some public service S (bank). The service applies some asymmetric algorithm of encryption $E($,$) and decryp-$ tion $D($,$) in its work. Namely, for the pair of public and private keys (P K, S K)$ and for any message m it holds: if $c=E(m, P K)$, then $m=D(c, S K)$ and visa versa: if $c^{\prime}=E(m, S K)$, then $m=D\left(c^{\prime}, P K\right)$.

To spend her money, Alice generates a sequence of public and private key pairs $\left(P K_{1}, S K_{1}\right), \ldots,\left(P K_{n}, S K_{n}\right)$ and sends the sequence of public keys $P K_{1}, \ldots, P K_{n}$ to the service S. By this she authorizes the service S to control her n coins.

If Alice would like to spend a coin with number i in the shop of Bob, she just gives the secret key $S K_{i}$ to Bob and informs him about the number i. To get the coin with number i, Bob sends to the service S three parameters: number i, some non secret message m, and its electronic signature $c^{\prime}=E\left(m, S K_{i}\right)$. The service S checks whether the signature c^{\prime} corresponds to the message m, i.e. does it hold the equality $m=D\left(c^{\prime}, P K_{i}\right)$. If it is so, the service accepts the signature, gives the coin number i to Bob and marks it as «spent».

Problem for a special prize! Propose a modification of this scheme related to generation of public and private key pairs. Namely, is it possible for Alice not to send the sequence of public keys $P K_{1}, \ldots P K_{n}$ to the service S, but send only some initial information enough for generating all necessary public keys on the service's side? Suppose that Alice sends to the service S only some initial key $P K$ (denote it also as $P K_{0}$), some function f and a set of parameters T such that $P K_{i+1}=f\left(P K_{i}, T\right)$ for all $i \geqslant 0$. Propose your variant of this function f and the set T. Think also what asymmetric cryptosystem it is possible to use in such scheme.

Requirements to the solution. Knowing $P K, f$ and T, it is impossible to find any private key $S K_{i}$, where $i=1, \ldots, n$. It should be impossible to recover $S K_{i}$ even if the secret keys $S K_{1}, \ldots, S K_{i-1}$ are also known, or even if all other secret keys are known (more strong condition).

The picture of Gürbüz Doğan Ekşioğlu.

