Problem 4. «Matrix and reduction»

Alice used an alphabet with 30 characters from A to Z and 0,1 , «,», «!». Each of the letters is encoded as follows:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
P	Q	R	S	T	U	V	W	X	Y	Z	0	1	O	l
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

Encryption. The plaintext is divided into consequent subwords of length 4 that are encrypted independently via the same encryption (2×2)-matrix F with elements from \mathbb{Z}_{30}. For example, let the j-th subword be WORD and the encryption matrix F be equal to

$$
F=\left(\begin{array}{cc}
11 & 9 \\
11 & 10
\end{array}\right)
$$

The matrix that corresponds to WORD is denoted by P_{j} and the matrix that corresponds to the result of the encryption of WORD is C_{j} and calculated as follows:

$$
C_{j}=F \cdot P_{j}=\left(\begin{array}{cc}
11 & 9 \\
11 & 10
\end{array}\right) \cdot\left(\begin{array}{cc}
22 & 17 \\
14 & 3
\end{array}\right)=\left(\begin{array}{cc}
8 & 4 \\
22 & 7
\end{array}\right) \quad(\bmod 30),
$$

that is the j-th subword of the ciphertext is IWEH.
Eve has intercepted a ciphertext that was transmitted from Alice to Bob:

CYPHXWQE!WNKHZOZ

Also, she knows that the third subword of the plaintext is FORW. Will Eve be able to restore the original message?

