

Problem 4. «Matrix and reduction»

Alice used an alphabet with 30 characters from A to Z and $0,\,1,\,\ll, \gg,\,\ll!\,\gg.$ Each of the letters is encoded as follows:

A	В	C	D	E	F	G	H	I	J	K	L	М	N	0
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Р	Q	R	S	Т	U	V	W	Х	Y	Z	0	1	,	!

Encryption. The plaintext is divided into consequent subwords of length 4 that are encrypted independently via the same encryption (2×2) -matrix F with elements from \mathbb{Z}_{30} . For example, let the *j*-th subword be WORD and the encryption matrix F be equal to

$$F = \begin{pmatrix} 11 & 9\\ 11 & 10 \end{pmatrix}.$$

The matrix that corresponds to WORD is denoted by P_j and the matrix that corresponds to the result of the encryption of WORD is C_j and calculated as follows:

$$C_j = F \cdot P_j = \begin{pmatrix} 11 & 9\\ 11 & 10 \end{pmatrix} \cdot \begin{pmatrix} 22 & 17\\ 14 & 3 \end{pmatrix} = \begin{pmatrix} 8 & 4\\ 22 & 7 \end{pmatrix} \pmod{30},$$

that is the j-th subword of the ciphertext is IWEH.

Eve has intercepted a ciphertext that was transmitted from Alice to Bob:

CYPHXWQE!WNKHZOZ

Also, she knows that the third subword of the plaintext is FORW. Will Eve be able to restore the original message?

Page 4 from 8

nsucrypto@nsu.ru