Problem 3. «A long-awaited event»

Bob received from Alice the secret message

L78V8LC7GBEYEE

informing him about some important event.
It is known that Alice used an alphabet with 37 characters from A to Z , from 0 to 9 and a space. Each of the letters is encoded as follows:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T					
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19					
U	V	W	X	Y	Z	0	1	2	3	4	5	6	7	8	9	SPACE								
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36								

For the encryption, Alice used a function f such that $f(x)=a x^{2}+b x+c(\bmod 37)$ for some integers a, b, c and f satisfies the property

$$
f(x-y)-2 f(x) f(y)+f(1+x y)=1 \quad(\bmod 37) \text { for any integers } x, y
$$

Decrypt the message that Bob has received.

