Problem 6. «Studying Feistel schemes»

The classical Feistel scheme and its generalizations are widely used to construct iterated block ciphers. Generalized Feistel schemes (GFS) usually divide a message into m subblocks and applies the (classical) Feistel transformation for a fixed number of two subblocks, and then performs a cyclic shift of m subblocks.

Trudy wants to compare algebraic properties of different generalizations of the Feistel scheme based on shift registers over an arbitrary finite commutative ring with identity. For studying, she chooses a nonlinear feedback shift register (NLFSR), Type-II GFS and Target-Heavy (TH) GFS. She wants to decide whether or not these transformations belong to the alternating group (that is the group of all even permutations). Trudy needs your help!

Let us give necessary notions. By $A(X)$ we denote the alternating group on a set X. Let t be a positive integer, $t \geqslant 1,(R,+, \cdot)$ be a commutative ring with identity $1,|R|=2^{t}$. The characteristic $\operatorname{char}(R)$ of R is equal to 2^{c} for some $c \in\{1, \ldots, t\}$. In many block ciphers, we have

$$
R \in\left\{\mathbb{Z}_{2}^{t}, \mathbb{Z}_{2^{t}}, \mathbf{G F}\left(2^{t}\right)\right\}, \operatorname{char}\left(\mathbb{Z}_{2^{t}}\right)=2^{t}, \operatorname{char}\left(\mathbb{Z}_{2}^{t}\right)=\operatorname{char}\left(\mathbf{G F}\left(2^{t}\right)\right)=2
$$

Q1 NLFSR. Let $\ell \geqslant 1, m=2^{\ell}, h: R^{m-1} \rightarrow R$. Consider a mapping $g_{k, h}^{(\mathrm{NLSFR})}: R^{m} \rightarrow R^{m}$ defined by

$$
g_{k, h}^{(\mathrm{NLSFR})}:\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto\left(\alpha_{2}, \alpha_{3}, \ldots, \alpha_{m-1}, \alpha_{m}, \alpha_{1}+h\left(\alpha_{2}, \ldots, \alpha_{m}\right)+k\right)
$$

for all $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in R^{m}, k \in R$. Describe all positive integers $t \geqslant 1, \ell, c \geqslant 1$ and a mapping $h: R^{m-1} \rightarrow R$ such that $g_{k, h}^{(\text {NLSFR })} \in A\left(R^{m}\right)$ for any $k \in R$. Prove your answer!

Q2 Type-II GFS. Let $\ell \geqslant 2, m=2^{\ell}, h=\left(h_{1}, \ldots, h_{m / 2}\right)$, where $h_{i}: R \rightarrow R$ for $1 \leqslant i \leqslant m / 2$. Consider a mapping $g_{k, h}^{\text {(GFS-II) }}: R^{m} \rightarrow R^{m}$ defined by

$$
\begin{aligned}
g_{k, h}^{(\mathrm{GFS}-\mathrm{II})}:\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto\left(\alpha_{2}+h_{1}\left(\alpha_{1}\right)+k_{1}, \alpha_{3}, \alpha_{4}+h_{2}\left(\alpha_{3}\right)+k_{2}, \alpha_{5}, \ldots\right. \\
\left.\alpha_{m-1}, \alpha_{m}+h_{m / 2}\left(\alpha_{m-1}\right)+k_{m / 2}, \alpha_{1}\right)
\end{aligned}
$$

for all $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in R^{m}, k=\left(k_{1}, \ldots, k_{m / 2}\right) \in R^{m / 2}$. Describe all positive integers $t \geqslant 2, \ell, c \geqslant 1$ and mappings $h_{1}, \ldots, h_{m / 2}$ such that $g_{k, h}^{(\mathrm{GFS}-\mathrm{II})} \in A\left(R^{m}\right)$ for any $k \in R^{m / 2}$. Prove your answer!

Q3 TH-GFS Let $\ell \geqslant 2, m=2^{\ell}, h=\left(h_{2}, \ldots, h_{m}\right)$, where $h_{i}: R \rightarrow R$ for $2 \leqslant i \leqslant m$. Consider a mapping $g_{k, h}^{(\mathrm{TH})}: R^{m} \rightarrow R^{m}$ defined by

$$
\begin{aligned}
g_{k, h}^{(\mathrm{TH})}:\left(\alpha_{1}, \ldots, \alpha_{m}\right) \mapsto\left(\alpha_{2}+h_{2}\left(\alpha_{1}\right)+k_{2}, \alpha_{3}+\right. & h_{3}\left(\alpha_{1}\right)+k_{3}, \ldots, \\
& \left.\alpha_{m-1}+h_{m-1}\left(\alpha_{1}\right)+k_{m-1}, \alpha_{m}+h_{m}\left(\alpha_{1}\right)+k_{m}, \alpha_{1}\right)
\end{aligned}
$$

for all $k=\left(k_{2}, \ldots, k_{m}\right) \in R^{m-1}$. Describe all positive integers $t \geqslant 2, \ell, c \geqslant 1$ and mappings h_{2}, \ldots, h_{m} such that $g_{k, h}^{(\mathrm{TH})} \in A\left(R^{m}\right)$ for any $k \in R^{m-1}$. Prove your answer!

