## Problem 5. «Nonlinear hiding»

Nicole is learning about secret sharing. She created a binary vector $y \in \mathbb{F}_{2}^{6560}$ and splitted it into 20 shares $x_{i} \in \mathbb{F}_{2}^{6560}$ (here $\oplus$ denotes the bit-wise XOR):

$$
y=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{20}
$$

Then, she created 20 more random vectors $x_{21}, \ldots, x_{40}$ and shuffled them together with the shares $x_{1}, \ldots, x_{20}$. Formally, she chose a secret permutation $\sigma$ of $\{1, \ldots, 40\}$ and computed

$$
\begin{aligned}
& z_{1}=x_{\sigma(1)} \\
& z_{2}=x_{\sigma(2)} \\
& \quad \ldots \\
& z_{40}=x_{\sigma(40)}
\end{aligned}
$$

where each vector $z_{i} \in \mathbb{F}_{2}^{6560}$. Finally, she splitted each $z_{i}$ into 5 -bit blocks, and applied a secret bijective mapping $\rho: \mathbb{F}_{2}^{5} \rightarrow \mathcal{S}$, where

$$
\mathcal{S}=\{0,1,2,3,4,5,6,7,8,9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, y\}
$$

(this strange alphabet has y instead of v ).
Formally, she computed $Z_{i} \in \mathcal{S}^{1312}, 1 \leqslant i \leqslant 40$ such that

$$
Z_{i}=\left(\rho\left(z_{i, 1 \ldots 5}\right), \rho\left(z_{i, 6 \ldots 10}\right), \ldots, \rho\left(z_{i, 6556 \ldots 6560}\right)\right)
$$

After Nicole came back from school, she forgot all the details! She only has written all the $Z_{i}$ and she also remembers the first 6432 bits of $y$ ( 128 more are missing). The attachment contains the 6432 -bit prefix of $y$ on the first line and $Z_{1}, \ldots, Z_{40} \in \mathcal{S}^{1312}$ on the following lines, one per line.

Help Nicole to recover full $y$ !

