

Problem 5. «Nonlinear hiding»

Nicole is learning about secret sharing. She created a binary vector $y \in \mathbb{F}_2^{6560}$ and splitted it into 20 shares $x_i \in \mathbb{F}_2^{6560}$ (here \oplus denotes the bit-wise XOR):

$$y = x_1 \oplus x_2 \oplus \ldots \oplus x_{20}$$

Then, she created 20 more random vectors $x_{21}, ..., x_{40}$ and shuffled them together with the shares $x_1, ..., x_{20}$. Formally, she chose a secret permutation σ of $\{1, ..., 40\}$ and computed

$$z_1 = x_{\sigma(1)},$$

 $z_2 = x_{\sigma(2)},$
...
 $z_{40} = x_{\sigma(40)},$

where each vector $z_i \in \mathbb{F}_2^{6560}$. Finally, she splitted each z_i into 5-bit blocks, and applied a secret bijective mapping $\rho : \mathbb{F}_2^5 \to \mathcal{S}$, where

 $\mathcal{S} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, y\}$

(this strange alphabet has y instead of v).

Formally, she computed $Z_i \in \mathcal{S}^{1312}$, $1 \leq i \leq 40$ such that

$$Z_i = (\rho(z_{i,1\dots 5}), \rho(z_{i,6\dots 10}), \dots, \rho(z_{i,6556\dots 6560})).$$

After Nicole came back from school, she forgot all the details! She only has written all the Z_i and she also remembers the first 6432 bits of y (128 more are missing). The attachment contains the 6432-bit prefix of y on the first line and $Z_1, ..., Z_{40} \in \mathcal{S}^{1312}$ on the following lines, one per line.

Help Nicole to recover full y!

Page 5 from 13