Problem 4. «Let's decode!»

Bob realized a cipher machine for encoding integers from 0 to $n-1$ by 128-bit strings using the secret function Enc. He set $n=1060105447831$. The cipher machine works as follows: it takes as input a pair of non-negative decimal integers x and d and returns

$$
\operatorname{Enc}\left(x^{d} \bmod n\right) .
$$

Bob chose a secret number k from 0 to $n-1$ and asked Alice to guess it. Alice said that she can find k if Bob provides her with the cipher machine with an additional property. Namely, x can be also of the form " k ", and then the cipher machine will return $\operatorname{Enc}\left(k^{d} \bmod n\right)$. In particular, for the query " $k, 1$ ", the cipher machine returns

$$
\operatorname{Enc}(k)=41 \mathrm{~b} 66519 \mathrm{cf} 4356 \mathrm{cbbb} 4 \mathrm{e} 88 \mathrm{a} 4336024 \mathrm{da}
$$

(the result is in hexadecimal notation). Here it is the cipher machine!
Prove Alice is right and find k with as few requests to the cipher machine as possible!

