Problem 10. «Close to permutations»

Bob wants to use a new function inside the round transformation of a cipher. He chooses a family \mathcal{F} of functions F_{α} from \mathbb{F}_{2}^{n} to itself of the form

$$
F_{\alpha}(x)=x \oplus(x \boxplus \alpha) \text {, where }
$$

- $x, \alpha \in \mathbb{F}_{2}^{n}$,
- \oplus denotes the bit-wise XOR of binary vectors,
- \boxplus denotes the addition modulo 2^{n} of integers whose binary representations are the given vectors.

Bob noted that functions from \mathcal{F} are not bijective. So, he introduced a parameter that measures in some sense the closeness of a function to a permutation. For a given function F from \mathbb{F}_{2}^{n} to itself, the parameter is

$$
C(F)=\#\left\{(x, y) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}: F(x)=F(y)\right\} .
$$

The smaller the parameter value, the better the function. Bob wants to choose «the best functions» by this parameter among \mathcal{F}. Help Bob to find answers to the questions below!

Q1 How many «the best functions» exist in \mathcal{F} ?
Q2 What α correspond to «the best functions» from \mathcal{F} ?
Q3 What is $C\left(F_{\alpha}\right)$ for «the best functions» from \mathcal{F} ?

