

Problem 10. «Close to permutations»

Bob wants to use a new function inside the round transformation of a cipher. He chooses a family \mathcal{F} of functions F_{α} from \mathbb{F}_2^n to itself of the form

$$F_{\alpha}(x) = x \oplus (x \boxplus \alpha)$$
, where

- $x, \alpha \in \mathbb{F}_2^n$,
- $\bullet \oplus$ denotes the bit-wise XOR of binary vectors,
- \boxplus denotes the addition modulo 2^n of integers whose binary representations are the given vectors.

Bob noted that functions from \mathcal{F} are not bijective. So, he introduced a parameter that measures in some sense the closeness of a function to a permutation. For a given function F from \mathbb{F}_2^n to itself, the parameter is

$$C(F) = \#\{(x, y) \in \mathbb{F}_2^n \times \mathbb{F}_2^n : F(x) = F(y)\}.$$

The smaller the parameter value, the **better** the function. Bob wants to choose «the best functions» by this parameter among \mathcal{F} . Help Bob to find answers to the questions below!

Q1 How many «the best functions» exist in \mathcal{F} ?

Q2 What α correspond to «the best functions» from \mathcal{F} ?

Q3 What is $C(F_{\alpha})$ for «the best functions» from \mathcal{F} ?

Page 10 from 13

nsucrypto@nsu.ru