Problem 4. «Elliptic curve points»

Alice is studying elliptic curve cryptography. Her task for today is in practice with basic operations on elliptic curve points. Let \mathbb{F}_{p} be the finite field with p elements $(p>3$ prime). Let E / \mathbb{F}_{p} be an elliptic curve in Weierstrass form, that is a curve with equation $y^{2}=x^{3}+a x+b$, where $a, b \in \mathbb{F}_{p}$ and $4 a^{3}+27 b^{2} \neq 0$. Recall that the affine points on E and the point \mathcal{O} at infinity form an abelian group, denoted

$$
E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\} .
$$

Assume that $b=0$. Let $R \in E\left(\mathbb{F}_{p}\right)$ be an element of odd order, $R \neq \mathcal{O}$. Consider $H=\langle R\rangle$ that is the subgroup generated by R.

Help Alice to show that if $(u, v) \in H$, then u is a quadratic residue $\bmod p$.

Remark. For the Weierstrass form, $P_{1}+P_{2}$ for $P_{1}, P_{2} \in E\left(\mathbb{F}_{p}\right)$ is calculated as follows:

- $P_{1}+\mathcal{O}=P_{1}$.

Next, we assume that $P_{1}, P_{2} \neq \mathcal{O}$ and $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$.

- $P_{1}+\left(-P_{1}\right)=\mathcal{O}$. Note that $-\left(x_{1}, y_{1}\right)=\left(x_{1},-y_{1}\right)$.

Next, we assume that $P_{1} \neq-P_{2}$.

- $P_{1}+P_{1}=P_{3}=\left(x_{3}, y_{3}\right)$ can be calculated in the following way:

$$
x_{3}=\frac{\left(3 x_{1}^{2}+a\right)^{2}}{\left(2 y_{1}\right)^{2}}-2 x_{1}, \quad y_{3}=-y_{1}-\frac{3 x_{1}^{2}+a}{2 y_{1}}\left(x_{3}-x_{1}\right) .
$$

Next, we assume that $P_{1} \neq P_{2}$.

- $P_{1}+P_{2}=P_{3}=\left(x_{3}, y_{3}\right)$ can be calculated in the following way:

$$
x_{3}=\frac{\left(y_{2}-y_{1}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}-x_{1}-x_{2}, \quad y_{3}=-y_{1}-\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x_{3}-x_{1}\right) .
$$

