Problem 6. «Two strings»

Carol takes inspiration from different strings and comes up with unusual ways to build them. Today, she starts with a binary string A_{n} constructed by induction in the following way. Let $A_{1}=0$ and $A_{2}=1$. For $n>2$, the string A_{n} is defined by concatenating the strings A_{n-1} and A_{n-2} from left to right, i.e. $A_{n}=A_{n-1} A_{n-2}$.

Together with A_{n} consisting of " 0 "s and " 1 "s, Carol constructs a ternary string B_{n} consisting of " -1 "s, " 0 "s and " 1 "s. Let $A_{n}=a_{1} \ldots a_{m}$ for appropriate m, where $a_{i} \in\{0,1\}$; then $B_{n}=b_{1} \ldots b_{\ell}$, where $\ell=\lceil m / 2\rceil$ and $b_{i} \in\{-1,0,1\}$ is defined as follows:

$$
b_{i}=a_{2 i-1}-a_{2 i} \text { for } i=1, \ldots, \ell \text { (the exceptional case } b_{\ell}=a_{m} \text { if } m \text { is odd). }
$$

Help Carol to find all n such that B_{n} has the same number of " 1 "s and " -1 "s.
Example. The strings A_{n} and B_{n} for small n are the following:

$$
\begin{array}{llll}
A_{3}=A_{2} A_{1}=10, & A_{4}=A_{3} A_{2}=101, & A_{5}=A_{4} A_{3}=10110, & A_{6}=A_{5} A_{4}=10110101 . \\
B_{3}=1, & B_{4}=11, & B_{5}=100, & B_{6}=10(-1)(-1) .
\end{array}
$$

