Problem 4. «Related passwords»

Tim and Ann want to create curiously related passwords for their cryptosystem. A password is a 9 -digit decimal number. To start, they choose a random number $e_{1} e_{2} \ldots e_{9}$ that has nine (not necessarily distinct) decimal digits.

- Tim finds a password $d_{1} d_{2} \ldots d_{9}$ such that each of the numbers formed by replacing just one of the digits d_{i} in $d_{1} d_{2} \ldots d_{9}$ by the corresponding digit e_{i} is divisible by 7 .
- Ann finds a password $f_{1} f_{2} \ldots f_{9}$ in similar but not the same way: each of the nine numbers formed by replacing one of the e_{i} in $e_{1} e_{2} \ldots e_{9}$ by f_{i} is divisible by 7 .

Show that for each $i, d_{i}-f_{i}$ is divisible by 7 for any of Tim's and Ann's passwords!
Example. Let $e_{1} e_{2} \ldots e_{9}=448259545$. Then Tim's password can be $d_{1} d_{2} \ldots d_{9}=199501996$ and Ann's password can be $f_{1} f_{2} \ldots f_{9}=822571226$.

