Problem 8. «Collisions»

Consider a hash function H that takes as its input a message m consisting of $k \cdot n$ bits and returns an n-bit hash value $H(m)$. The message m is at least one block long $(k \geqslant 1)$, and can be split into k blocks of n bits each: $m_{1}, m_{2}, \ldots, m_{k}$. Let f be a function which takes an n-bit input and returns an n-bit output. We will use \oplus to denote the bitwise exclusive-or operator.

The hash function H is defined iteratively as follows:

$$
h_{i}:=m_{i} \oplus f\left(h_{i-1} \oplus m_{i}\right),
$$

where all n bits of h_{0} are zero, and $H(m):=h_{k}$. Below is an illustration of the hash function H.

A collision for H is defined as a pair of distinct messages (m, m^{\prime}) so that $H(m)=H\left(m^{\prime}\right)$. Given a message m and its corresponding hash value $H(m)$, a second preimage for H is defined as a message $m^{\prime} \neq m$ so that $H(m)=H\left(m^{\prime}\right)$.

Suppose that f is a secret random function and that you have obtained $10 \cdot n$ random different pairs $(x, f(x))$ of argument and value of the function f. Under these restrictions, solve the following problems. Algorithms in Q1 and Q2 must give a solution with a high probability ($>1 / 2$).

Q1 Propose an algorithm which finds a collision for H.
Q2 Propose an algorithm which, given a message m and its corresponding hash value $H(m)$, finds a second preimage m^{\prime} for H.

Q3 Suppose that $n=256$ bits and the message m is "A random matrix is likely decent". Find a second preimage m^{\prime} for this message.
Remark 1. The text message is converted into a bit sequence as follows: first, each character is converted into a 8 -bit integer according to the UTF-8 encoding, and then these integers are concatenated together using the big-endian ordering. For example, the string "Hello" is converted into the sequence of integers $(72,101,108,108,111)$ which then gives the following binary string: 0100100001100101011011000110110001101111 . You can give your answer to this task in the form of a binary sequence or a hexadecimal sequence.
Remark 2. You can evaluate the hash function H on any input message here. The message being hashed should be presented as either a binary sequence or a hexadecimal sequence, starting with a symbol b or h which specifies the representation. Here you can find a list of values of the function f on 512 different inputs (binary sequences are presented as integers).

