

Problem 6. «Miller — Rabin revisited»

Bob decided to improve the famous Miller — Rabin primality test. The odd number n being tested is represented in the form $n-1=2^k3^\ell m$, where m is not divisible by 2 or 3.

The modified primality test is the following:

- **1.** Take a random $a \in \{2, ..., n-2\}$.
- **2.** Put $a \leftarrow a^m \mod n$. If a = 1, return "PROBABLY PRIME".
- **3.** For $i = 0, 1, \dots, \ell 1$ do the following steps:
 - (a) $b \leftarrow a^2 \mod n$;
 - (b) if a + b + 1 is divisible by n, return "PROBABLY PRIME";
 - (c) $a \leftarrow ab \mod n$.
- **4.** For $i = 0, 1, \dots, k-1$ repeat:
 - (a) if a + 1 is divisible by n, return "PROBABLY PRIME";
 - (b) $a \leftarrow a^2 \mod n$.
- 5. Return "COMPOSITE".
- **Q1** Prove that this algorithm does not fail, that is, not return "COMPOSITE", for a prime n.

Q2 Bonus problem (extra scores, a special prize!)

A composite integer n may be classified as "PROBABLY PRIME" by a mistake. It is known that for the usual Miller — Rabin test the error probability is less than 1/4. Can this estimation be improved when we are switching to the described algorithm?

Remark. The expression $a \leftarrow a^m \mod n$ means that a takes a new value that is equal to the remainder of dividing a^m by n.