

Problem 4. «Orthomorphisms»

A young cryptographer Bob wants to build a new block cipher based on the Lai-Massey scheme. The Lai-Massey scheme depends on a finite group G with the neutral element e and an orthomorphism of G. Bob decides to use a nonabelian group and chooses a dihedral group D_{2^m} , $m \ge 4$, generated by a, u with presentation

$$a^{2^{m-1}} = e, \ u^2 = e, \ ua = a^{-1}u$$

Let θ be a permutation of a finite group G. Then θ is called an **orthomorphism of** G if the mapping $\pi : \alpha \mapsto \alpha^{-1}\theta(\alpha)$ is a permutation of G.

Bob needs to construct an orthomorphism of D_{2^m} . He considers the set DM_m consisting of all mappings $\theta_{(q_1,q_2,b_1,b_2)}^{(r_1,r_2,c_1,c_2)}$ on D_{2^m} given by

$$\theta_{(q_1,q_2,b_1,b_2)}^{(r_1,r_2,c_1,c_2)} : a^i \mapsto \begin{cases} a^{r_1i+c_1} & \text{if } i \in \{0,\dots,2^{m-2}-1\}, \\ a^{r_2i+c_2}u & \text{if } i \in \{2^{m-2},\dots,2^{m-1}-1\}, \end{cases}$$

$$\theta_{(q_1,q_2,b_1,b_2)}^{(r_1,r_2,c_1,c_2)} : a^i u \mapsto \begin{cases} a^{q_1i+b_1}u, & \text{if } i \in \{0,\dots,2^{m-2}-1\}, \\ a^{q_2i+b_2}, & \text{if } i \in \{2^{m-2},\dots,2^{m-1}-1\}, \end{cases}$$

and depending on $b_i, c_i, r_i, q_i \in \{0, \ldots, 2^{m-1} - 1\}$ for $i \in \{1, 2\}$, where the operations addition and multiplication are over the residue ring $\mathbb{Z}_{2^{m-1}}$.

- **Q1** Let m = 4. Help Bob to describe all orthomorphisms of DM_m and find their number.
- **Q2** For each $m \ge 4$, help Bob to describe all orthomorphisms of DM_m , i. e. give necessary and sufficient conditions on b_i, c_i, r_i, q_i for $i \in \{1, 2\}$ such that $\theta_{(q_1, q_2, b_1, b_2)}^{(r_1, r_2, c_1, c_2)}$ is an orthomorphism of D_{2^m} .

