Problem 4. «Orthomorphisms»

A young cryptographer Bob wants to build a new block cipher based on the LaiMassey scheme. The Lai-Massey scheme depends on a finite group G with the neutral element e and an orthomorphism of G. Bob decides to use a nonabelian group and chooses a dihedral group $D_{2^{m}}, m \geqslant 4$, generated by a, u with presentation

$$
a^{2^{m-1}}=e, u^{2}=e, u a=a^{-1} u .
$$

Let θ be a permutation of a finite group G. Then θ is called an orthomorphism of G if the mapping $\pi: \alpha \mapsto \alpha^{-1} \theta(\alpha)$ is a permutation of G.

Bob needs to construct an orthomorphism of $D_{2^{m}}$. He considers the set DM_{m} consisting of all mappings $\theta_{\left(q_{1}, q_{2}, b_{1}, b_{2}\right)}^{\left(r_{1}, r_{2}, c_{1}, c_{2}\right)}$ on $D_{2^{m}}$ given by

$$
\begin{aligned}
& \theta_{\left(q_{1}, q_{2}, b_{1}, b_{2}\right)}^{\left(r_{1}, r_{2}, c_{1}, c_{2}\right)}: a^{i} \mapsto \begin{cases}a^{r_{1} i+c_{1}} & \text { if } i \in\left\{0, \ldots, 2^{m-2}-1\right\}, \\
a^{r_{2} i+c_{2}} u & \text { if } i \in\left\{2^{m-2}, \ldots, 2^{m-1}-1\right\},\end{cases} \\
& \theta_{\left(q_{1}, q_{2}, b_{1}, b_{2}\right)}^{\left(r_{1}, r_{2}, c_{1}, c_{2}\right)}: a^{i} u \mapsto \begin{cases}a^{q_{1} i+b_{1}} u, & \text { if } i \in\left\{0, \ldots, 2^{m-2}-1\right\}, \\
a^{q_{2} i+b_{2}}, & \text { if } i \in\left\{2^{m-2}, \ldots, 2^{m-1}-1\right\},\end{cases}
\end{aligned}
$$

and depending on $b_{i}, c_{i}, r_{i}, q_{i} \in\left\{0, \ldots, 2^{m-1}-1\right\}$ for $i \in\{1,2\}$, where the operations addition and multiplication are over the residue ring $\mathbb{Z}_{2^{m-1}}$.

Q1 Let $m=4$. Help Bob to describe all orthomorphisms of DM_{m} and find their number.
Q2 For each $m \geqslant 4$, help Bob to describe all orthomorphisms of DM_{m}, i. e. give necessary and sufficient conditions on $b_{i}, c_{i}, r_{i}, q_{i}$ for $i \in\{1,2\}$ such that $\theta_{\left(q_{1}, q_{2}, b_{1}, b_{2}\right)}^{\left(r_{1}, r_{2}, c_{1}, c_{2}\right)}$ is an orthomorphism of $D_{2^{m}}$.

