Problem 3. «Hidden RSA»

Bob has learned about the public-key cryptography and now anyone can send a secret message to him. The message is encoded by a nonnegative integer x which has at most 70 digits in the decimal representation. To send a message for Bob, one has to enter it on his webpage. After the message is entered, it is immediately encrypted using RSA. The encryption result is

$$
\operatorname{Encr}(x)=x^{e} \bmod n,
$$

where n is a modulus (product of two distinct odd primes p and q) and e is a public exponent (coprime with $p-1$ and $q-1$). Bob is afraid of hackers and does not disclose either n or e (even though this contradicts the usual usage of the RSA cryptosystem).

Victor has intercepted the encrypted message
$y=71511896681324833458361392885184344933333159830863878600189212073777582178173$,
which Alice has sent to Bob.
Help Victor to decrypt y. You can enter any allowed message x on the Bob's website and receive in response the corresponding ciphertext $\operatorname{Encr}(x)$.

