Problem 5. «Miller - Rabin revisited»

Bob decided to improve the famous Miller - Rabin primality test. The odd number n being tested is represented in the form $n-1=2^{k} 3^{\ell} m$, where m is not divisible by 2 or 3 .

The modified primality test is the following:

1. Take a random $a \in\{2, \ldots, n-2\}$.
2. Put $a \leftarrow a^{m} \bmod n$. If $a=1$, return "PROBABLY PRIME".
3. For $i=0,1, \ldots, \ell-1$ do the following steps:
(a) $b \leftarrow a^{2} \bmod n$;
(b) if $a+b+1$ is divisible by n, return "PROBABLY PRIME";
(c) $a \leftarrow a b \bmod n$.
4. For $i=0,1, \ldots, k-1$ repeat:
(a) if $a+1$ is divisible by n, return "PROBABLY PRIME";
(b) $a \leftarrow a^{2} \bmod n$.
5. Return "COMPOSITE".

Prove that the algorithm does not fail, that is, not return "COMPOSITE", for a prime n.
Remark. The expression $a \leftarrow a^{m} \bmod n$ means that a takes a new value that is equal to the remainder of dividing a^{m} by n.

