

Problem 10. (APN + Involutions)

Alice wants to construct a block cipher with heavy use of **involutions** as its subcomponents; this minimizes difference in the algorithms for encryption and decryption. She knows that **almost perfect nonlinear permutations** (**APN permutations**) are the best choice of subcomponents to resist attacks based on differential technique. She wants to construct a set of APN permutations that are involutions for every $n \ge 2$.

Alice also knows that any involution can be expressed as the product of disjoint **transpositions**. So, she decides to study the following involution

$$g = \prod_{i=1}^{d} (\alpha_i, \alpha'_i),$$

where $\{\alpha_i, \alpha'_i\} \cap \{\alpha_j, \alpha'_j\} = \emptyset$ for all $i, j \in \{1, ..., d\}, i \neq j, 1 \leq d \leq 2^{n-1}$.

Alice needs your help to get APN permutations among such involutions g. Find answers to the following questions!

 $\mathbf{Q1}\ \mathrm{Let}$

$$\begin{split} \Lambda(g) &= \big\{ \alpha_i \oplus \alpha'_i : \ i = 1, ..., d \big\}, & \widehat{\Lambda}(g) &= \big[\alpha_i \oplus \alpha'_i : \ i = 1, ..., d \big], \\ \mathcal{B}(g) &= \big\{ x \oplus y : \ \{x, y\} \subseteq \operatorname{FixP}(g), \ x \neq y \big\}, & \widehat{\mathcal{B}}(g) &= \big[x \oplus y : \ \{x, y\} \subseteq \operatorname{FixP}(g), \ x \neq y \big], \end{split}$$

where $\operatorname{FixP}(g)$ is the set of all **fixed points** of g, i.e. $\operatorname{FixP}(g) = \{x \in \mathbb{F}_2^n : g(x) = x\}$.

Suppose that g is an APN permutation. Get necessary conditions for multisets $\widehat{\Lambda}(g)$, $\widehat{B}(g)$ and sets $\Lambda(g)$, B(g). Prove that if your conditions are not satisfied, then g is not an APN permutation.

Q2 Let

 $\mathbf{d}_{a,b}(g) = |\{x \in \mathbb{F}_2^n : g(x \oplus a) \oplus g(x) = b\}|, \ a, b \in \mathbb{F}_2^n.$

Let g be an involution and APN. Find $d_{a,a}(g)$ for each nonzero $a \in \mathbb{F}_2^n$.

Q3 Can you get the nontrivial upper bound on |FixP(g)|?

Q4 Let M_n be the set of all *n*-bit involutions that are APN permutations.

r 1 m d- y w

- (a) Can you find the cardinality of M_n for n = 2, 3, 4?
- (b) Can you find the cardinality of M_n for n = 5?

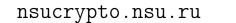
e r y

(c) Bonus problem (extra scores, a special prize!)

Let $n \ge 6$. Can you get the lower and the upper bounds for the cardinality of M_n ? Can you describe involutions from M_n ? Can you suggest constructions for involutions from M_n ?

Note that the mapping $x \mapsto x^{-1}$ in the Galois field $GF(2^n)$ belongs to M_n for odd $n \ge 3$.

Turn to the next page.



Page 11 from 13

nsucrypto@nsu.ru

PROVIOPATEOIAEVE 2019

International Olympiad in Cryptography NSUCRYPTO'2019Second roundOctober 14-21General, Teams

Remark. Let us recall the relevant definitions.

- \mathbb{F}_2^n is the vector space of dimension over $\mathbb{F}_2 = \{0, 1\}$.
- A vector $x \in \mathbb{F}_2^n$ has the form $x = (x_1, ..., x_n)$, where $x_i \in \mathbb{F}_2$. For two vectors $x, y \in \mathbb{F}_2^n$ their sum is $x \oplus y = (x_1 \oplus y_1, ..., x_n \oplus y_n)$, where \oplus stands for XOR operation.
- Let $\widehat{X} = [x_1, ..., x_d]$ be a multiset with the underlying set \mathbb{F}_2^n , where $x_1, ..., x_d \in \mathbb{F}_2^n$. Note that all elements in a set are distinct. Unlike a set, a multiset allows for multiple instances for each of its elements.
- A permutation s is a mapping from \mathbb{F}_2^n to \mathbb{F}_2^n such that $s(x) \neq s(y)$ for all $x, y \in \mathbb{F}_2^n$, $x \neq y$.
- An involution s is a permutation that is its own inverse, $s^2(x) = s(s(x)) = x$ for all $x \in \mathbb{F}_2^n$.
- For any different vectors $\alpha, \beta \in \mathbb{F}_2^n$, a permutation s is called a **transposition** if $s(\alpha) = \beta$, $s(\beta) = \alpha$ and s(x) = x for all $x \in \mathbb{F}_2^n \setminus \{\alpha, \beta\}$; it is denoted by $s = (\alpha, \beta)$.
- A permutation s is called **APN** (Almost Perfect Nonlinear) if, for every nonzero $a \in \mathbb{F}_2^n$ and every $b \in \mathbb{F}_2^n$, the equation $s(x \oplus a) \oplus s(x) = b$ has at most 2 solutions.

nsucrypto@nsu.ru