

Problem 5. «Broken Calculator»

Alice and Bob are practicing in developing toy cryptographic applications for smart-phones. This year they have invented Calculator that allows one to perform the following operations modulo 2019 (that is to get the result as the reminder of division by 2019):

- to insert at most 4-digit positive integers (digits from 0 to 9);
- to perform addition, subtraction and multiplication of two numbers;
- to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y from her smartphone to Bob's Calculator memory. To decrypt y, Bob needs to get the plaintext x (using his Calculator) by the rule: x is equal to the remainder of dividing $f(y) = y^5 + 1909y^3 + 401y$ by 2019.

At the most inopportune moment, Bob dropped his smartphone and broke its screen. Now, the button + as well as all digits except 1 and 5 are not working.

Help Bob to invent an efficient algorithm how to decrypt any ciphertext y using Calculator in his situation. More precisely, suggest a short list of commands, where each command has one of the following types $(1 \le j, k < i)$:

$$S_i = y, \quad S_i = a, \quad S_i = S_j - S_k, \quad S_i = S_j * S_k,$$

where a is an at most 4-digit integer consisting of digits 1 and 5 only; for example, a=1, $a=15,\ a=551,\ a=5115,\ {\rm etc.}$

The first command has to be $S_1=y$. In the last command, the resulted plaintext x has to be calculated. We remind that all calculations are modulo 2019. In particular, the integer 2500 becomes 481 and -1000 becomes 1019 immediately after entering or calculations. The shorter the list of commands you suggest, the more scores you get for this problem.

Example. The following list of commands calculates $x = y^2 - 55$:

Command	Result
$S_1 = y$	y
$S_2 = S_1 * S_1$	y^2
$S_3 = 11$	11
$S_4 = 5$	5
$S_5 = S_3 * S_4$	55
$S_6 = S_2 - S_5$	$y^2 - 55$

