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Abstract—NSUCRYPTO is the unique cryptographic Olympiad containing scientific mathemati-
cal problems for professionals, school and university students from any country. Its aim is to involve
young researchers in solving curious and tough scientific problems of modern cryptography. From
the very beginning, the concept of the Olympiad was not to focus on solving olympic tasks but
on including unsolved research problems at the intersection of mathematics and cryptography. The
Olympiad history starts in 2014. In 2019, it was held for the sixth time. We present the problems and
their solutions of the Sixth International Olympiad in cryptography NSUCRYPTO′2019. Under
consideration are the problems related to attacks on ciphers and hash functions, protocols, Boolean
functions, Dickson polynomials, prime numbers, rotor machines, etc. We discuss several open
problems on mathematical countermeasures to side-channel attacks, APN involutions, S-boxes,
etc. The problem of finding a collision for the hash function Curl27 was partially solved during the
Olympiad.
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INTRODUCTION

NSUCRYPTO (Non-Stop University Crypto) is the International Olympiad in cryptography that
was held for the sixth time in 2019.

Interest in the Olympiad around the world is significant. This year, there were hundreds of participants
from 26 countries; 42 participants in the first round and 21 teams in the second round from 16 coun-
tries were awarded with prizes and honorable diplomas. The Olympiad Program Committee includes
specialists from Belgium, France, the Netherlands, the USA, Norway, India, Luxembourg, Belarus’,
Kazakhstan, and Russia.

Let us shortly formulate the format of the Olympiad. One of the Olympiad main ideas is that
everyone can participate! Each participant chooses his/her category when registering on the Olympiad
website [1]. There are three categories: “school students” (for junior researchers: pupils and high
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624 GORODILOVA et al.

school students), “university students” (for participants who are currently studying at universities)
and “professionals” (for participants who have already completed education or just want to be in the
restriction-free category). Awarding of the winners is held in each category separately.

The Olympiad consists of the two independent Internet rounds: the first one is individual (duration 4
hours 30 minutes) while the second round is a team one (duration 1 week). The first round is divided into
two sections: A—for “school students,” B—for “university students” and “professionals.” The second
round is common to all participants. Participants read the Olympiad problems and submit their solutions
through the Olympiad website. The language of the Olympiad is English.

The Olympiad participants are always interested in solving various problems of any complexity at the
intersection of mathematics and cryptography. The participants show their knowledge, creativity, and
professionalism. That is why the Olympiad not only includes interesting tasks with known solutions but
also offers unsolved problems. This year, one of such open problems, “Curl27” (see Section 2.14), was
partially solved during the second round! All open problems stated during the Olympiad history can be
found in [2].

On the website we also mark the current status of each problem.

Fig. 1. NSUCRYPTO logo.

For example, in addition to “Curl27”, the problem “Sylvester matri-
ces” was solved by three teams in 2018, and the problem “Algebraic
immunity” was completely solved during the Olympiad in 2016.
And what is important for us, some participants were trying to find
solutions after the Olympiad was over. For example, a partial solution
for the problem “A secret sharing” (2014) was proposed in [3]. We
invite everybody who has ideas on solving the problems to send
solutions to us!

The paper is organized as follows: We start with the problem
structure of the Olympiad in Section 1. Then we present formu-
lations of all problems stated during the Olympiad and give their
detailed solutions in Section 2. Finally, we publish the lists of NSU-
CRYPTO’2019 winners in Section 3.

Mathematical problems and their solutions of the previous In-
ternational Olympiads in cryptography NSUCRYPTO from 2014 to
2018 can be found in [4], [5], [6], [7], and [8] respectively.

1. PROBLEM STRUCTURE OF THE OLYMPIAD

There were 16 problems stated during the Olympiad; some of them were included in both rounds
(Tables 1 and 2). Section A of the first round consisted of six problems, whereas the section B contained
seven problems. Three problems were common for both sections. The second round was composed of
eleven problems. Five problems of the second round included unsolved questions (with special awards
of the Program Committee).

2. PROBLEMS AND THEIR SOLUTIONS
In this section, we formulate all problems of NSUCRYPTO’2019 and present their detailed solutions

paying attention to the solutions by the participants.

2.1. Problem “A 1024-Bit Key”
2.1.1. Formulation. Alice has a 1024-bit key for a symmetric cipher (the key consists of 0s and 1s). Alice
is afraid of malefactors, so she changes her key everyday in the following way:

1. Alice chooses a subsequence of key bits such that the first bit and the last bit are equal to 0. She
also can choose a subsequence of length 1 that contains only 0.

2. Alice inverts all bits in this subsequence (0 turns into 1 and vice versa); bits outside of this
subsequence remain as they are.

Prove that the process will stop. Find the key that will be obtained by Alice in the end of the process.

Example of an operation. 11001 01101110
︸ ︷︷ ︸

011... turns to 11001 10010001
︸ ︷︷ ︸

011...
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2.1.2. Solution. Let us encode the binary vector of the key as the corresponding decimal number. It is
obvious that this number will increase on the next day since all bits on the left from the sequence are
not changing, but the first bit of the sequence turns from 0 to 1. Let us note that this number can not
increase infinitely since the size of the key is restricted by 1024 bits, so, in the very end the key will be
maximal possible and, thus, will consist of all 1s.

Almost all participants successfully solved the problem.

2.2. Problem “The Magnetic Storm”

2.2.1. Formulation. A hardware random number generator is a device that generates random sequences
consisting of 0s and 1s. Unfortunately, a disturbance caused by a magnetic storm affected this random

Table 1. Problems of the first round

N Problem title Maximum
score

1 A 1024-bit key 4

2 The magnetic storm 4

3 Autumn leaves 4

4 A rotor machine 4

5 Broken Calculator 4

6 A promise 6

N Problem title Maximum
score

1 Autumn leaves 4

2 The magnetic storm 4

3 A rotor machine 4

4 16QAM 8

5 A promise and money 6

6 Calculator 6

7 APN + Involutions 7

Section A Section B

Table 2. Problems of the second round

N Problem title Maximum score

1 A 1024-bit key 4

2 Sharing 6 + additional scores for open questions

3 Factoring in 2019 8

4 TwinPeaks-3 8

5 Curl27 10 + additional scores for open questions

6 8-bit S-box Unlimited (open problem)

7 A rotor machine 4

8 16QAM 8

9 Calculator 6

10 APN + Involutions (extended) 12 + additional scores for open questions

11 Conjecture Unlimited (open problem)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 14 No. 4 2020



626 GORODILOVA et al.

Fig. 2. Autumn Leaves.

number generator. As a result, the device had generated a sequence of 0s of length k (where k is a positive
integer), and then started to generate an infinite sequence of 1s.

Prove that at some point the generator will produce the number 1 . . . 10 . . . 0 that is divisible by 2019.

2.2.2. Solution.Let us prove that a number of form 1 . . . 11 . . . 1 is divisible by 2019. Consider all
numbers that consists only of 1s. Since there are infinitely many of these numbers, there can be found
a pair of numbers A and B such that they have the same remainder when divided by 2019. Therefore,
C = A− B = 1 . . . 10 . . . 0 consisting of m 1s for some natural m is divisible by 2019, and, since 2019 is
not divisible by 2 and 5,

C∗ = C × 10 . . . 0 = 1 . . . 10 . . . 0

is divisible by 2019 for any number of 0s.
There were many correct solutions by the participants.

2.3. Problem “Autumn Leaves”
2.3.1. Formulation. Read a hidden message (see Fig. 2)!

2.3.2. Solution. We see different leaves and spaces between them. It looks like a simple substitution
cipher was used there and distinct leaves corresponded to distinct English letters. By English grammar,
we can suppose that the second and the third words are “is a.” Then the first word starts with “a” and
by its structure can be “autumn” (which is very likely as the autumn landscape is depicted). Also, the
leaf is the most common letter in the text and we can guess that it is “e.” Then we see “*ea*” in the
third line that seems to be “leaf”. As a result the last word becomes “fl**e*” that is “flower.” Finally,
we get “Autumn is a second spring when every leaf is a flower” that is a famous quote by
Albert Camus. Almost all participants read the message.

2.4. Problem “A Rotor Machine”
2.4.1. Formulation. In a country rotor machines were very useful for encryption of information (see

examples in Fig. 3).
Eve knows that for some secret communication a simple rotor machine was used. It works with

letters O, P, R, S, T, Y only and has an input circle with lamps (start), one rotor, and a reflector. See
Fig. 4.
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Fig. 3. Examples of rotor machines.

Fig. 4. Scheme of the rotor.

The input circle and the reflector are fixed in their positions, while the rotor can be in one of the six
possible positions. After pressing a button on a keyboard, an electrical signal corresponding to the letter
goes through the machine, comes back to the input circle, and the appropriate lamp shows the result
of encryption. After each letter is encrypted, the rotor turns right (i.e. clockwise) on 60 degrees. Points
of different colors (enumerated) on the rotor sides indicate different noncrossing signal lines within the
rotor.

For instance, if the rotor is fixed as shown on the picture above then if you press the button O, it will
be encrypted as T (the signal enters the rotor via red (color 1) point, is reflected, and then comes back
via purple (color 5) line). If you press O again, it will be encrypted as R. If you press T then, you will get S,
and so on.

Eve intercepted the secret message

TRRYSSPRYRYROYTOPTOPTSPSPRS.

Help her to decrypt it keeping in mind that Eve does not know the initial position of the rotor.

2.4.2. Solution. To solve the problem and decrypt the message, we need to correctly understand the
scheme of work. A key for the cipher is the initial position of the rotor. We denote it by a color of the
circle (enumerated) on the input side of the rotor that corresponds to the letter O. Table 3 represents the
encryption tables depending on the key.

Table 3. Encryption tables

O P R S T Y

red (color 1) T Y S R O P

white (color 2) R S O P Y T

purple (color 3) Y R P T S O

O P R S T Y

green (color 4) S R P O Y T

yellow (color 5) S T Y O P R

blue (color 6) R T O Y P S

Trying all six possible keys, we find the only one meaningful message POST TO TOP OOPS SORRY
STOP ROTOR that corresponds to the “yellow” (color 5) key.

Almost all participants solved the problem. The most interesting solutions were obtained by creating
real models for this rotor machine, for example, by a school student Varvara Lebedinskaya (The
Specialized Educational Scientific Center of Novosibirsk State University), by the team of Kristina
Geut, Sergey Titov, and Dmitry Ananichev (Ural State University of Railway Transport).
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2.5. Problem “Broken Calculator”

2.5.1. Formulation. Alice and Bob are practicing in developing toy cryptographic applications for smart-
phones. This year they have invented Calculator that allows one to perform the following operations
modulo 2019 (that is to get the result as the reminder of division by 2019):

• to insert at most 4-digit positive integers (digits from 0 to 9);
• to perform addition, subtraction, and multiplication of two numbers;
• to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y from
her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext x (using his
Calculator) by the rule: x is equal to the remainder of dividing f(y) = y5 + 1909y3 + 401y by 2019.

At the most inopportune moment, Bob dropped his smartphone and broke its screen (see Fig. 5).
Now, the button “+” as well as all digits except “1” and “5” are not working.

Help Bob to invent an efficient algorithm of how to decrypt any ciphertext y using Calculator in
his situation. More precisely, suggest a short list of commands such that each command has one of the
following types (1 � j, k < i):

Si = y, Si = a, Si = Sj − Sk, Si = Sj ∗ Sk,

where a is an at most 4-digit integer consisting of digits 1 and 5 only; for example, a = 1, a = 15,
a = 551, a = 5115, etc.

The first command has to be S1 = y. In the last command, the resulting plaintext x has to be
calculated. We remind that all calculations are modulo 2019. In particular, the integer 2500 becomes 481
and −1000 becomes 1019 immediately after entering or calculations. The shorter the list of commands
you suggest, the more scores you get for this problem.

Example. The following list of commands

Fig. 5. Broken Calculator.

calculates x = y2 − 55:

Command Result

S1 = y y

S2 = S1 ∗ S1 y2

S3 = 11 11

S4 = 5 5

S5 = S3 ∗ S4 55

S6 = S2 − S5 y2 − 55

2.5.2. Solution. Let us present the original solution in 14 steps by the Program Committee.
Let a ≡m b mean that integers a and b are congruent modulo m. The following relations hold:

f(y) ≡2019 y5 + 1909y3 + 401y ≡2019 y(y4 − 110y2 + 401)

≡2019 y(y4 − 2 ∗ 55y2 + 552 − 552 + 401) ≡2019 y((y2 − 55)2 − 552 + 5 ∗ 222)

≡2019 y((y2 − 55)2 − 112 ∗ (52 − 5 ∗ 22)) ≡2019 y((y2 − 55)2 − 112 ∗ 5)

≡2019 y((y2 − 55)2 − 11 ∗ 55).

Thus, the reminder of division of f(y) by 2019 can be calculated for any y by the list of commands in
Table 4. A similar solution was found by Borislav Kirilov (Bulgaria, The First Private Mathematical
Gymnasium).

Note. The polynomial f(y) = y5 + 1909y3 + 401y is the Dickson polynomial D5(y, a) = y5 − 5y3a +
5ya2 for a = 22 with coefficients taken modulo 2019.
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Table 4. List of commands for the Program Committee solution

Command Result Command Result Command Result

S1 = y y S4 = S2 − S3 y2 − 55 S7 = S3 ∗ S6 11 ∗ 55

S2 = S1 ∗ S1 y2 S5 = S4 ∗ S4 (y2 − 55)2 S8 = S5 − S7 (y2 − 55)2 − 11 ∗ 55

S3 = 55 55 S6 = 11 11 S9 = S1 ∗ S8 y((y2 − 55)2 − 11 ∗ 55)

2.6. Problem “Calculator”
2.6.1. Formulation. Alice and Bob are practicing in developing toy cryptographic applications for smart-
phones. This year they have invented Calculator that allows one to perform the following operations
modulo 2019:

• to insert at most 4-digit positive integers (digits from 0 to 9);
• to perform addition, subtraction, and multiplication of two numbers;
• to store temporary results and read them from the memory.
Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y from

her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext x (using his
Calculator) by the rule x = f(y) mod 2019, where f is a secret polynomial known to Alice and Bob
only.

At the most inopportune moment, Bob dropped his smartphone and broke its screen (see Fig. 6).
Now, the button “+” as well as all digits except “2” are not working.

Help Bob to invent an efficient algorithm of how to decrypt any ciphertext y using Calculator in his
situation if the current secret polynomial is f(y) = y5 + 1909y3 + 401y. More precisely, suggest a short
list of commands, where each command has one of the following types (1 � j, k < i):

Si = y, Si = 2, Si = 222, Si = Sj − Sk, Si = 22, Si = 2222, Si = Sj ∗ Sk.

The first command has to be S1 = y. In the last command, the resulted plaintext x has to be
calculated. We remind that all calculations are modulo 2019. In particular, the integer 2222 becomes 203
immediately after entering. The shorter the list of commands you suggest, the more scores you get for
this problem.

Example. The following list of commands

Fig. 6. Broken Calculator.

calculates x = y2 − 4:

Command Result

S1 = y y

S2 = S1 ∗ S1 y2

S3 = 2 2

S4 = S3 ∗ S3 4

S5 = S2 − S4 y2 − 4

2.6.2. Solution. The polynomial f(y) = y5 + 1909y3 + 401y is the Dickson polynomial D5(y, a) = y5 −
5y3a + 5ya2 for a = 22 with coefficients taken modulo 2019. The following relations hold:

D5(y, a) = yD4(y, a) − aD3(y, a) = yD2(D2(y, a), a2) − aD3(y, a)

= y((y2 − 2a)2 − 2a2) − ay(y2 − 2a − a).

For a = 22, the value f(y) can be calculated for any y by the list of commands given in Table 5.
What was surprising that the participants found two solutions that has 11 and 13 steps! These

solutions were awarded by additional points. The solution with 11 steps were found by Madalina
Bolboceanu (Romania, Bitdefender) during the first round (Table 6). The solution with 13 steps were
given by Henning Seidler and Katja Stumpp team (Germany, TU Berlin) during the second round. Both
solutions were based on the representation f(y) = y((y2 − 44)(y2 − 66) − 222).
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Table 5. List of commands for the Program Committee solution

Command Result Command Result

S1 = y y S8 = S7 ∗ S7 (y2 − 2a)2

S2 = 2 2 S9 = S8 − S5 (y2 − 2a)2 − 2a2

S3 = 22 a S10 = S1 ∗ S9 y((y2 − 2a)2 − 2a2)

S4 = S2 ∗ S3 2a S11 = S7 − S2 y2 − 2a − a

S5 = S3 ∗ S4 2a2 S12 = S1 ∗ S11 y(y2 − 2a − a)

S6 = S1 ∗ S1 y2 S13 = S3 ∗ S12 ay(y2 − 2a − a)

S7 = S6 − S4 y2 − 2a S14 = S10 − S13 f(y)

Table 6. List of commands for the 11-step solution

Command Result Command Result

S1 = y y S7 = S6 − S4 y2 − 44 − 22

S2 = S1 ∗ S1 y2 S8 = S6 ∗ S7 (y2 − 44) ∗ (y2 − 44 − 22)

S3 = 2 2 S9 = S4 ∗ S4 222

S4 = 22 22 S10 = S8 − S9 (y2 − 44) ∗ (y2 − 44 − 22) − 222

S5 = S3 ∗ S4 44 S11 = S1 ∗ S10 f(y)

S6 = S2 − S5 y2 − 44

2.7. Problem “A Promise”
2.7.1. Formulation. Young cryptographers, Alice, Bob and Carol, are interested in quantum computings
and really want to buy a quantum computer. A millionaire gave them some certain amount of money
(say, XA for Alice, XB for Bob, and XC for Carol). He also made them promise that they would not tell
anyone including each other, how much money everyone of them had received.

• Could you help the cryptographers to invent an algorithm of how to find out (without breaking the
promise) whether the total amount of money they have, XA + XB + XC , is enough to buy a quantum
computer?

• What weaknesses does your algorithm have (if someone breaks the promise)? Does it always
protect the secret of the honest participants from the dishonest ones?

2.7.2. Solution. This problem is a particular case for the problem “A promise and money” for only three
participants (see Section 2.8).

2.8. Problem “A Promise and Money”
2.8.1. Formulation. A group of young cryptographers are interested in quantum computings and really

want to buy a quantum computer. A millionaire gave them a certain amount of money (say, n
cryptographers; Xi for each of them, i = 1, . . . , n). He also made a promise from them that they would
not tell anyone, including each other, how much money everyone of them had received.

• Could you help the cryptographers to invent an algorithm of how to find out (without breaking the
promise) whether the total amount of money they have,

∑n
i=1 Xi, is enough to buy a quantum computer?

• What do you think whether there are such algorithms protecting the secrets of honest participants
from dishonest ones?

• What weaknesses does your algorithm have (if someone breaks the promise)? Does it always
protect the secret of honest participants from dishonest ones?
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2.8.2. Solution. Here we give an idea of the solution proposed by Mikhail Kudinov (Bauman Moscow
State Technical University).

First of all, it is supposed that no one can buy a quantum computer himself without other participants.
Let us assume that N ′ is the amount of money that one needs to buy a quantum computer and

N = nN ′,

where n is the number of participants. The millionaire gave them Xi money for i ∈ {1, . . . , n}. Each
participant chooses random secrets si,j uniformly so that

n
∑

j=1

si,j ≡ Xi (mod N).

Then each of them gives the share si,j to the owner of Xj by the secure channel. After this procedure,
the owner of Xi has shares sk,i for each k ∈ {1, . . . , n}. It is obvious that

n
∑

j=1

n
∑

i=1

si,j =
n
∑

i=1

Xi (mod N).

Under the first suggestion, all participants can together calculate the common amount of money.

The main disadvantage of the algorithm, in addition to the suggestion, is a big amount of private
communication (though the number of keys can be n for asymmetric schemes).

By analogy, many participants described algorithms similar to Schneier’s calculating average salary
algorithm [9]. In general, all these algorithms are vulnerable if n − 1 participants are dishonest. Some
participants tried to describe a possibility of using a cryptosystem that is homomorphic by “+” and
preserves relation “<,” as some general analysis.

The problem of the first school round is the same problem for n = 3 (score assignment was more
loyal). Despite there was quite a few solutions for this problem in the student round, each solution had big
or small lacks in analysis of the general case, in analysis of the algorithm advantages and disadvantages,
in description of communications (the number of the private communications, what kind of cryptography
is used, the number of required private keys), and so on. As a result, there was no possibility to chose the
“best of the best” for 6 scores, and we decided to give 5 scores as maximum. There were nine maximal-
scored solutions.

2.9. Problem “16QAM”

2.9.1. Formulation. For sending messages, Alice and Bob use a fiber-optic communication via 16QAM
technology. This technology allows them to send messages whose alphabet consists of 16 letters, where
each letter is usually encoded with a 4-bit Gray code. While a message is transmitted in the channel,
single errors in codewords of the Gray code are possible.

Alice has read an interesting book and would like to share her enthusiasm with Bob! Alice sent
a short fragment from the book to Bob. Owing to the characteristics of the communication channel
used, she divided the text into two parts and sent them separately. In the first part, she placed all of the
16 consonants that occurred in this fragment; in the second part, she placed vowels (“y” is a vowel),
a space, a hyphen, and punctuation marks. Then Alice also encoded the letters with a Hamming code to
be able to correct single errors. She applied a 7-bit Hamming code with the parity-check matrix whose
columns are written in lexicographical order.

Bob received the two parts of ciphertext given in hexadecimal notation (see Table 7).

Also, he received the following number sequence:

22, 19, 3, 3, 36, 53, 3, 33, 20, 28.

Each number indicates how many consonants are contained between the punctuation marks.

Recover the text and find the main character of the book Alice has read!
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Table 7. The ciphertext that Bob received from Alice (Problem “16QAM”)

Part 1 Part 2

66674C36666F43D3C199900AA1AA325992A
67A59D9B4A8B69330D1BC000153367A5E33
D30E6692D0F349D3321FFFF0ED706667A7F
670D999679F4AA67561BA679B4AA54F34D5
AB0F4AACCF000055CE633670D9DA54CE37F
660DE19CD995335495523CCAAA8F1E03325
86CF48A98CD9B387FD9D546A99E9D200033
3201513FE5B4AA00CCCE9667554CD2CCCB3
330F32A666553CD756AC3E0674E9D369E1D
C6A9999780007F00961E66465519FEA8B25
14CCCB332AA63332CCCE6D2A99AACCCC004

66CA61967319CCD2CE76998CE6433332D19
B46784C65334E999A402ADA0265A99A6633
33319B32D3299698CCC96986619967134CC
B4CE23333334CC6730CE90170CCCD2CE669
996A61999EA63332CCA4C3332D4CD3334CC
D3319994730CCCD3A6669D96A66999699B3
98640CC86CE619676AD4CD3308999866D33
79321C33210B4C6732199B53218019A404C
D2DE65A986663398CCCCCB5319CC6665997
B96A63398CD9CCD2CD9A399A66339866619
98CD9CC325A6339CCE619998C04C66CE633
996A61998CF66967334CC66CA6199865E(0)2

2.9.2. Solution. Some details in the problem statement are insignificant. Namely, we could omit the
step with the Gray code and mind that Alice substitutes 7-bit codewords of the Hamming code for each
symbol in each part of the plaintext.

The crucial idea to broke the cipher Alice and Bob use is analyzing the frequency distribution in each
part of the ciphertext. This helps them to deduce the probable meaning of the most common symbols and
form partial words. Tentative search for the combinations of consonants and vowels giving actual words
in English expands the partial solution. Frequencies of the pairs of letters also give an improvement but
it could seem inessential. At last, one can employ search engine on the Internet to find the fragment of
the book that Alice sent to Bob.

Let us consider a possible solution. Alice uses the Hamming code with the parity check matrix H and
the corresponding generator matrix G, where

H =

⎡

⎢

⎢

⎢

⎣

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

⎤

⎥

⎥

⎥

⎦

, G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

First, rewrite each part of the given ciphertext in the binary form. Split them into 7-bit words and correct
errors using the parity check matrix H . One can decode the Hamming code into a 4-bit Gray code but it
is not a necessary step for the solution. Calculating the frequencies of the codewords separately in each
part of the given ciphertext, we put them in Table 8.

Compare the frequencies obtained with those of letters in the English language. The suitable
frequency distribution can be found in [10] cited, e.g., at [11]. According to Lewand, arranged from most
to least common in appearance, the letters are:

e t a o i n s h r d l c u m w f g y p b v k j x q z.

We start with vowels, punctuation marks, spaces, and a hyphen, which are placed in Part 2. Make
a guess that the most frequent symbol in Part 2 is the space. It is also worth to note that most of
the punctuation marks are followed by a space in contrast to a hyphen, which is usually embraced by
letters. Using letter frequencies, we determine the probable spaces, vowels, and hyphen and construct
the following partial solution for this part of the plaintext (the sign # substitutes punctuation):

ee ae e oe o e ua iaia# e oo oy-oy i o ea ee# u# ea# auae o ie ea o e aoy a oe
o i a i eae# a i o o o eae a oo o i o iee ay ue aeii o aa aie# uuay# e uai uy oy
oe i a e ea i e eae# i e ee oeee o e a a ee a# e e a uy ee e i a e oe o ee a a#

Let us turn to Part 1 which contains 16 consonants occurring in the fragment of the book. Let us order
the codewords of the Hamming code from most to least frequent in Part 1, as it is shown in Table 8, a.
Denote the 7-bit codewords by hexadecimal numbers from 0 till F. Then we get the following ciphertext
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Table 8. Frequencies of Hamming codewords in the text

Gray code Hamming code Frequency

1011 0110011 46

0010 0101010 30

1001 0011001 24

0001 1101001 24

0011 1000011 19

0000 0000000 15

0110 1100110 13

1100 0111100 8

1111 1111111 8

1101 1010101 7

0100 1001100 6

1110 0010110 5

1010 1011010 5

0101 0100101 4

1000 1110000 4

0111 0001111 2

Gray code Hamming code Frequency

0100 1001100 85

1011 0110011 50

1001 0011001 33

0001 1101001 26

1010 1011010 17

0011 1000011 9

0000 0000000 8

1110 0010110 7

1100 0111100 2

0010 0101010 1

1000 1110000 1

0111 0001111 0

0101 0100101 0

1101 1010101 0

0110 1100110 0

1111 1111111 0

(a) Part 1 (b) Part 2

of 220 symbols in length that is splitted into 10 pieces (according to the number sequence given in the
task):

023402C43E0251412B0103 02C1B32407551003703 4A3 B46 33A4884CE02E804020631094106311739943
1675510A0040C1068047266101D10619FF56D4031A00048090103 355
025108B315023021A3020246102173994 E2333C72410275585D46 021281BD102021A0202631016055

Then we match the symbol frequencies in Part 1 of the ciphertext with those of consonants in the
English alphabet. The first five pairs are like as follows: 0 - t, 1 - n, 2 - s/h, 3 - s/h, and 4 - r.

The bigram “th” is the most frequent in English. This allows us to make a suggestion that “2”
substitutes “h” and “3” substitutes “s.” Then we obtain a partial solution for Part 1 and, combining with
one for Part 2, get the following pieces of the plaintext given in Table 9. It is not difficult to recognize
words “these are the” at the beginning in (1). Also, we can see “the” as the first word in (2) and (8).

The best idea for the next step is to search through the English dictionary for the words that have
given vowels in the prescribed order. It is possible to use one of the tools for the pattern recognition
available on the Internet, e.g., [12]. Advanced participants of the Olympiad implemented some computer
programs on their own.

Consider several examples. We have a word with consonants “s55” and vowels “uuay” in (7), and the
last two consonants are identical. The only match is “usually”, so we assume that “5” substitutes the
letter “l.” The pattern “auae” in combination with double “s” gives us two possibilities in (5): “assuage”
and “sausage.” In any case, it seems like “A” means “g.” Then we have “rugs” in (3). The pattern “uai”
and consonants “5nt8B” lead us to “lunatic” in (8), so “8” probably means “c.”

At this point we revise our matching the letters and their frequencies corresponding to the Part 1
of the ciphertext. Let us look at the first eight letters with large frequencies: “t n h s r l 6 7/c.”
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Table 9. Partial plaintext

No. Partial plaintext

(1) thsrthCrsEth5nrnhBtnts
ee ae e oe o e ua iaia#

(2) thCnBshrt755ntts7ts
e oo oy-oy i o ea ee#

(3) rAs
u#

(4) Br6
ea#

(5) ssAr88rCEthE8trtht6snt9rnt6snn7s99rs
auae o ie ea o e aoy a oe o i a i eae#

(6) n6755ntAttrtCnt68tr7h66ntnDnt6n9FF56DrtsnAtttr8t9tnts
a i o o o eae a oo o i o iee ay ue aeii o aa aie#

(7) s55
uuay#

(8) th5nt8Bsn5thsthnAsththr6nthn7s99r
e uai uy oy oe i a e ea i e eae#

(9) EhsssC7hrnth75585Dr6
i e ee oeee o e a a ee a#

(10) thnh8nBDnththnAthth6sntn6t55
e e a uy ee e i a e oe o ee a a#

We can see that the letter “d” has still been hidden. According to the Lewand distribution it is the most
probable that “6” means “d.” Then (4) contains “Brd” and “ea” that gives us possible words “beard”
and “bread.” Therefore, it seems like “B” substitutes “b.”

A thorough analysis of the remaining ciphertext and search for words by patterns and number of
letters eventually lead us to the plaintext (with punctuation replaced by #):

these are the mores of the lunar inhabitants# the moon boy-shorty will not eat
sweets# rugs# bread# sausage or ice cream of the factory that does not print
ads in newspapers# and will not go to treatment a doctor who did not invented
any puzzle advertising to attract patients# usually# the lunatic buys only
those things that he read in the newspaper# if he sees somewhere on the wall
a clever ad# then he can buy even the thing that he does not need at all#

This is a fragment of the fairytail novel “Dunno on the Moon” by the Russian writer Nikolay Nosov.
The title character of the novel is a boy-shorty Dunno. The problem was completely solved by 13 teams
in the second round and by Samuel Tang (Hong Kong, Black Bauhinia) in the first round. The best
solutions were proposed by the team of Irina Slonkina, Mikhail Sorokin, and Vladimir Bobrov (Bauman
Moscow State Technical University) and the team of Vladimir Paprotski, Dmitry Zarembo, and Karina
Kruglik (Belarusian State University).

2.10. Problem “APN + Involutions”

The first three questions Q1, Q2, and Q3 were given as the problem “APN + Involutions” in the first
round. The extended version of the task for the second round included also Question Q4 that contains
some open problems.
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2.10.1. Formulation. Alice wants to construct a block cipher with heavy use of involutions as subcom-
ponents; this minimizes the difference between the algorithms for encryption and decryption. She knows
that APN permutations are the best choice of subcomponents to resist the attacks based on differential
technique. She wants to construct some set of APN permutations that are involutions for every n � 2.

Alice knows that every involution can be expressed as the product of disjoint transpositions. So, she
decides to study the following involution

g =
d
∏

i=1

(

αi, α
′
i

)

,

where {αi, α
′
i} ∩ {αj , α

′
j} = ∅ for all i, j ∈ {1, ..., d}, i �= j, and 1 � d � 2n−1.

Alice needs your help to get APN permutations among such involutions g. Find answers to the
following questions!

Q1: Let

Λ(g) =
{

αi ⊕ α′
i : i = 1, ..., d

}

, ̂Λ(g) =
[

αi ⊕ α′
i : i = 1, ..., d

]

,

B(g) =
{

x ⊕ y : {x, y} ⊆ FixP(g), x �= y
}

, ̂B(g) =
[

x ⊕ y : {x, y} ⊆ FixP(g), x �= y
]

,

where FixP(g) is the set of all fixed points of g; i.e. FixP(g) = {x ∈ F
n
2 : g(x) = x}.

Suppose that g is an APN permutation. Get necessary conditions for multisets ̂Λ(g), ̂B(g) and sets
Λ(g), B(g). Prove that if your conditions do not hold then g is not an APN permutation.

Q2: Let da,b(g) = |{x ∈ F
n
2 : g(x⊕ a)⊕ g(x) = b}|, a, b ∈ F

n
2 . Let g be an involution and APN. Find

da,a(g) for each nonzero a ∈ F
n
2 .

Q3: Can you get the nontrivial upper bound on |FixP(g)|?

Q4: Let Mn be the set of all n-bit involutions that are APN permutations.

(1) Can you find the size of Mn for n = 2, 3, 4?

(2) Can you find the size of Mn for n = 5?

(3) A Bonus Problem (extra scores, a special prize!)

Let n � 6. Can you get the lower and the upper bounds for the size of Mn? Can you describe
involutions from Mn? Can you suggest constructions for involutions from Mn?

Note that the mapping x 	→ x−1 in the Galois field GF (2n) belongs to Mn for odd n � 3.

Remark. Let us recall some relevant definitions:

• F
n
2 is the vector space of dimension n over F2 = {0, 1}.

• A vector x ∈ F
n
2 has the form x = (x1, ..., xn), where xi ∈ F2. For two vectors x, y ∈ F

n
2 their sum

is x ⊕ y = (x1 ⊕ y1, ..., xn ⊕ yn), where ⊕ stands for XOR operation.

• Let ̂X =
[

x1, ..., xd

]

be a multiset with the underlying set F
n
2 , where x1, ..., xd ∈ F

n
2 . Note that

all elements in a set are distinct. Unlike a set, a multiset allows for multiple instances for each of its
elements.

• A permutation s is a mapping from F
n
2 to F

n
2 such that s(x) �= s(y) for all x, y ∈ F

n
2 , x �= y.

• An involution s is a permutation that is its own inverse, s2(x) = s(s(x)) = x for all x ∈ F
n
2 .

• For every different vectors α, β ∈ F
n
2 , a permutation s is called a transposition if s(α) = β,

s(β) = α, and s(x) = x for all x ∈ F
n
2\{α, β}; it is denoted by s = (α, β).

• A permutation s is called APN (Almost Perfect Nonlinear) if, for every nonzero a ∈ F
n
2 and every

b ∈ F
n
2 , the equation s(x ⊕ a) ⊕ s(x) = b has at most 2 solutions.
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2.10.2. Solution. Consider the solutions of the problem.
Q1: Let a ∈ Λ(g). Hence, a = x ⊕ y, where y = g(x) and (x, y) = (αi, α

′
i) for some i. Then

g(x ⊕ a) = g(y) = x = y ⊕ a = g(x) ⊕ a.

Let a ∈ B(g). Hence, a = x ⊕ y, where x, y ∈ FixP(g). Then

g(x ⊕ a) = g(y) = y = x ⊕ a = g(x) ⊕ a.

Thus, da,a(g) � 2 for every vector a ∈ Λ(g) ∪ B(g).
Let g be an APN permutation. Then da,a(g) = 2. Hence, the multiplicity of all elements from Λ(g)

and B(g) is 1. Thus, Λ(g) = ̂Λ(g) and B(g) = ̂B(g). Note that Λ(g) ∩ B(g) = ∅.
Q2: Since g is an APN permutation; therefore, da,a(g) � 2. As we get in Q1, da,a(g) = 2 for every

vector a ∈ Λ(g) ∪ B(g). Let us prove that da,a(g) = 0 for a /∈ Λ(g) ∪ B(g).
Let a be a nonzero vector and x be a solution of g(x ⊕ a) ⊕ g(x) = a. Since g is a permutation, either

x ∈ FixP(g) or x = αi (x = α′
i) for some i. Consider the two cases:

1. Let x ∈ FixP(g). Then, g(x ⊕ a)⊕ g(x) = a implies g(x ⊕ a) = x⊕ a. Hence, x⊕ a ∈ FixP(g).
As a result, a ∈ B(g).

2. Without loss of generality, let x = αi for some i and y = x ⊕ a. If y ∈ FixP(g) then g(x ⊕ a) ⊕
g(x) = a implies g(x) = x, which is a contradiction. Hence, without loss of generality, y = α′

j for some
j (so, we have αi ⊕ α′

j = a). Then

g(αi ⊕ a) ⊕ g(αi) = a ⇒ g(α′
j) ⊕ α′

i = a ⇒ αj ⊕ α′
i = a.

Let us show that α′
i and αj is also solutions. Indeed,

g(α′
i ⊕ a) ⊕ g(α′

i) = g(αj) ⊕ αi = α′
j ⊕ αi = a, g(αj ⊕ a) ⊕ g(αj) = g(α′

i) ⊕ α′
j = αi ⊕ α′

j = a.

Thus, if i �= j then we get at least 3 solutions that is a contradiction for the APN property of g. Hence,
j = i and a ∈ Λ(g).

Q3: Let us prove that |FixP(g)| � 1 + (2n−1 − 1)1/2.
The involution g is APN. From Q1 we have

B(g) ∩ Λ(g) = ∅. (1)

Let q = |FixP(g)|. Since g is an involution, q is even. Owing to (1) and Λ(g) ∪B(g) ⊆ F
n
2\{0}, we have

|Λ(g)| + |BB(g)| � 2n − 1. (2)

Since |B(g)| =
(q
2

)

, |Λ(g)| = 2n−1 − q/2, we have |Λ(g)| + |BB(g)| = q(q − 1)/2 + 2n−1 − q/2.
From (2), we have q(q − 1)/2 + 2n − q � 2n − 1. Thus, q(q − 2)/2 � 2n−1 − 1; i.e.,

q � 1 + (2n−1 − 1)1/2.

Q4: (a) It could be computationally verified that M2 = ∅ and |M3| = 224. Then, it is known [13] that
there are no APN permutations for n = 4. Hence, M4 = ∅.

(b) Recall some definitions:. A function A : F
n
2 → F

n
2 is affine if A(x⊕ y) = A(x)⊕A(y)⊕A(0) for

all x, y ∈ F
n
2 . Two functions F,G : F

n
2 → F

n
2 are called affine equivalent if there exist affine permutations

A1 and A2 such that F = A1 ◦ F ◦ A2. It is easy to see that the APN permutation property of a function
is an invariant under the affine equivalence. There exist [13] only five affine equivalence classes of
APN permutations. Moreover, by [13, theorem 3], only one class contains functions together with their
inverses. Hence, only this class of APN permutations can contain involutions. The representative of this
class is the famous inverse function over the finite field: F (x) = x−1 for nonzero x and F (0) = 0 (here,
functions from F

n
2 to F

n
2 are considered as functions over the finite field of order 2n). The inverse function

is an involution. Thus, all APN involutions for n = 5 are affine equivalent to the inverse function.
(c) There were no interesting suggestions by the participants for these open problems.

The unique full correct solution in the first round was proposed by Henning Seidler (Germany, TU
Berlin). In the second round, the best solution for 11 scores was proposed by the team of Kristina Geut,
Sergey Titov, and Dmitry Ananichev (Russia, Ural State University of Railway Transport, Ural Federal
University).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 14 No. 4 2020



ON THE SIXTH INTERNATIONAL OLYMPIAD IN CRYPTOGRAPHY 637

2.11. Problem “Sharing”

2.11.1. Formulation.Bob is interested in studying mathematical countermeasures to side-channel
attacks on block ciphers. He found out that the techniques such as special sharings of functions can
be applied. Now he is thinking about the following mathematical problem in this approach:

Let F denote the set of invertible functions (permutations) from F
4
2 to F

4
2 and let Fn denote the set

of invertible functions from (F4
2)

n to (F4
2)

n. Let F ∈ Fn be

F (x1, x2, . . . , xn) =
(

F1(x1, x2, . . . , xn), F2(x1, x2, . . . , xn), . . . , Fn(x1, x2, . . . , xn)
)

,

with component functions Fi : (F4
2)

n → F
4
2, i = 1, . . . , n.

For every f ∈ F , a function F ∈ Fn is called a sharing of f if

n
∑

i=1

Fi(x1, x2, . . . , xn) = f

(

n
∑

i=1

xi

)

for all (x1, x2, . . . , xn) ∈ (F4
2)

n.

Moreover, F is an noncomplete sharing of f if F is a sharing of f with the additional property that each
component function Fi is independent of xi.

Bob needs your help to study functions for which a noncomplete sharing exists. Find answers to the
following questions!

Q1: Let A denote the set of affine functions from F
4
2 to F

4
2. Two functions f, g ∈ F are affine

equivalent if there exist a, b ∈ A such that g = b ◦ f ◦ a.
Let f and g be two functions in the same affine equivalence class of F and let F be a noncomplete

sharing of f . Derive from F a noncomplete sharing for g.
All functions of the same affine equivalence class have the same degree. It is known [14] that this

equivalence relation partitions F into 302 classes: 1 class corresponds to A, 6 classes contain quadratic
functions, and 295 classes contain cubic functions.

Also, Bob knows that when n � 5 then there exists a noncomplete sharing for each f ∈ F (it can
be shown by construction). When n = 2 then a noncomplete sharing exists only for the functions in A.
When n = 3 then a noncomplete sharings exist for A and also for 5 out of the 6 equivalence classes
containing quadratic functions. When n = 4 then noncomplete sharings exist for A, for all 6 quadratic
equivalence classes, and for 5 cubic classes.

Q2: A Bonus problem (extra scores, a special prize!)
Find a concise mathematical property that f ∈ F must have in order that a noncomplete sharing F

exists for n = 3 and n = 4.

Q3: A Bonus problem (extra scores, a special prize!)

Generalize to functions over F
5
2 and F

6
2.

2.11.2. Solution. Q1: Let f and g be two functions in the same affine equivalence class of F ; i.e.,
g = b ◦ f ◦ a for some a, b ∈ A, and let F ∈ Fn be a noncomplete sharing of f . At first, one can notice
that since f and g are invertible, the mappings a and b must be invertible as well. Let us denote

a(x) = Ax + a′, x ∈ F
4
2, b(x) = Bx + b′, x ∈ F

4
2,

where A and B are nonsingular binary matrices of order 4 × 4 and a′, b′ ∈ F
4
2.

Using the components functions {Fi}n
i=1 of F , we define the invertible function G ∈ Fn with

components functions

Gj (x1, x2, ..., xn) =

{

BF1 (Ax1 + a′, Ax2, ..., Axn) + b′, j = 1,
BFj (Ax1 + a′, Ax2, ..., Axn) , j �= 1,

where j = 1, 2, ..., n.
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Then for every (x1, x2, ..., xn) ∈
(

F
4
2

)n, we have

n
∑

j=1

Gj (x1, x2, ..., xn) = BF1

(

Ax1 + a′, Ax2, ..., Axn

)

+ b′

+
n
∑

j=2

BFj

(

Ax1 + a′, Ax2, ..., Axn

)

= B

⎛

⎝

n
∑

j=1

Fj

(

Ax1 + a′, Ax2, ..., Axn

)

⎞

⎠+ b′

= Bf
(

Ax1 + a′ + Ax2 + . . . + Axn

)

+ b′

= Bf

[

A

(

n
∑

i=1

xi

)

+ a′
]

+ b′ = b ◦ f ◦ a

(

n
∑

i=1

xi

)

= g

(

n
∑

i=1

xi

)

.

Therefore, the function G ∈ Fn defined as

G (x1, x2, ..., xn) = (G1 (x1, x2, ..., xn) , G2 (x1, x2, ..., xn) , ..., Gn (x1, x2, ..., xn)) ,

is a sharing of g.
From noncompleteness of F it follows that Gj , which is in fact an affine transformation of Fj , does

not depend on xj . Hence, G is a noncomplete sharing of g.
Q2–Q3: These open problems were not solved completely during the Olympiad. Nevertheless, one

perspective solution was proposed by the team of Victoria Vlasova, Mikhail Polyakov, and Alexey
Chilikov (Bauman Moscow State Technical University). They found a sufficient condition for the
existence of a noncomplete sharing for n = 3. Let us describe it here.

Let wt(y) be the Hamming weight of a binary vector y. Given σ ∈ F2, put

δσ(y) =

{

y, σ = 1,
0, σ = 0,

where 0 is the zero vector of the same dimension as y.
Let V be a vector space over the field K and assume that for the invertible function f : V → V it holds

∑

σ∈Fn
2

(−1)wt(σ)f

(

n
∑

i=1

δσi (xi)

)

= 0. (3)

Then there exists a noon-complete sharing for f . Further we consider the case n = 3.
Indeed, given (x1, x2, x3) ∈ V 3, put

F1 (x1, x2, x3) = f (x2) − f (x2 + x3) , F2 (x1, x2, x3) = f (x3) − f (x1 + x3) ,

F3 (x1, x2, x3) = f (x1) − f (x1 + x2) .

It is clear that every Fi : V 3 → V does not depend on xi, where i = 1, 2, 3. Consider the expression

3
∑

i=1

Fi (x1, x2, x3) = f (x2) − f (x2 + x3) + f (x3) − f (x3 + x1) + f (x1) − f (x1 + x2)

=
∑

σ∈F
3
2

(−1)wt(σ)f

(

3
∑

i=1

δσi (xi)

)

+ f (x1 + x2 + x3) − f(0) = f (x1 + x2 + x3) − f(0).

Without loss of generality we assume that f(0) = 0. Otherwise, we can consider the initial problem
for the function g(x) = f(x) − f(0) with g(0) = 0 and which, by the arguments from Q1, has a non-
complete sharing if and only if f does.

Finally,
∑3

i=1 Fi (x1, x2, x3) = f (x1 + x2 + x3) , which completes the proof.
It was also shown by the authors that the condition (3) is necessary for the existence of a noncomplete

sharing of f for all n.
Taking V = F

m
2 with m = 4, 5, 6 and K = F2, we can obtain a solution of Q2 and Q3 for the case

n = 3.
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2.12. Problem “Factoring in 2019”

2.12.1. Formulation. Nicole is learning about the RSA cryptosystem. She has chosen random 500-bit
prime numbers p and q, 2499 � p, q < 2500, and computed n = p · q. Being a curious and creative person,
she has also combined the three numbers in funny ways. Her favorite one is an integer h such that

h ≡ 32019p2 + 52019q2 (mod n2 + 8 · 2019).

Unfortunately, she has lost the paper where she wrote the two prime numbers. Luckily, she remem-
bers n and h. Help Nicole to recover p and q.

n = 40763613025504836845249840044831561583564626405535158138667037
18791672670905308860844304055285019651507728831663677166092475
16155419756121537288444995708421977847213953345126368990185271
10259760189356588305406519080647582874212687596214191915933827
67252094717222418132289251314647500491996323400002019,

h = 78307999278336577586961528110240026923828914927526911949501196
64549497756373569985393554661132717198368717093111812566649031
17342818449633588647098544612151278035131454234786653136500887
08830470996542888912418213532073622903727205396807848603735835
72653630883685906916701587362236649126895719656663293825501223
97088799629252601249428062432254738935764304610281613264225641
74990272864680012560095992125783832230234589257650929348364268
48117494065463529201859600747521892957258104033195441014023432
36581529201392185327635674923459290749241831590661903965132514
2154451518308886658505820006667836934411881.

2.12.2. Solution. This problem is based on a (simplified) variation of the Coppersmith method.
Let m = n2 + 8 · 2019. It is a composite number with unknown factors. The idea is to find an

integer a such that the numbers a1 = a · 32019 mod m and a2 = a · 52019 mod m are small enough
and a1p

2 + a2q
2 exceeds the modulus m by a small amount and can be recovered from a · h mod m.

This can be done using the Lagrange–Gauss algorithm (which is a special case and the building block
of the LLL algorithm). Let Λ be the lattice spanned by the two vectors

v1 =
(

1, (52019 · (32019)−1 mod m)
)

, v2 =
(

0, m
)

.

Consider an arbitrary vector v = (a1, a2) in this lattice. It is easy to verify that

a1p
2 + a2q

2 ≡ a1 · h · (32019)−1 (mod m).

The lattice reduction guarantees to find such vector v with the norm

‖v‖ =
√

a2
1 + a2

2 ≤ 2(d−1)/4(detΛ)1/d =
√

m/
4
√

2,

where d = 2 is the dimension of the lattice. In particular,

|a1p
2 + a2q

2| ≤ n(p2 + q2) < n(p + q)2 < 10n2,

where the last two inequalities follow from the balancedness of the primes (i.e., max(p, q) ≤ 2min(p, q)).
It follows that there exists an integer z, |z| < 10, such that

a1 · h · (32019)−1 mod m + zm = a1p
2 + a2q

2.

In result, we obtain an equation in p2 and q2. By replacing p = n/q, we obtain a biquadratic equation
in q which is easy to solve and factor n.
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The final solution is:
p = 20190000758781541816811298104144770223468182091751945248792088

90921501144547048007953722271285690350264116081579241189587393
202602664199899594021414383,

q = 20190000739734941945213398056820939591822657460839955948263937
53631669289175827851666668014167119439386543289850940734885806
826120718179729242641026893.

The best solution was proposed by Alexey Zelenetskiy, Mikhail Kudinov, and Denis Nabokov team
(Russia, Bauman Moscow State Technical University).

2.13. Problem “TwinPeaks3” (online)

2.13.1. Formulation. As Bob’s previous cipher TwinPeaks2 (NSUCRYPTO-2018) was broken again,
he finally decided to read some books on cryptography. His new cipher is now inspired by practical
ciphers, while the number of rounds was reduced a bit for better performance.

Not only the best techniques were adopted by Bob, but also he decided to enhance his cipher
by security through obscurity, so the round functions are now unknown. The only thing known about
these functions is that they are the same for odd and even rounds.

New Bob’s cipher works as follows: A message X is represented as a binary word of length 128. The
latter is divided into four 32-bit words a, b, c, and d; then the following round transformation is applied
32 times:

(a, b, c, d) ← (b, c, d, a ⊕ (Fi(b, c, d))),
Fi = F1 for odd rounds and Fi = F2 for the rest.

Here F1 and F2 are secret functions accepting three 32-bit words and returning one word; and ⊕ is
the binary bitwise XOR. The concatenation of the final a, b, c, d is the resulting ciphertext Y for the
message X.

Agent Cooper again wants to read the Bob’s messages. He caught the ciphertext

Y = e473f19a247429ab33b66268d57dd241

(the ciphertext is given in hexadecimal notation, the first byte is e4).
He was also able to gain access to Bob’s testing server with encryption and decryption routines, using

the secret key (see [15]). Unfortunately, the version of software available on this server is not final. So,
the decryption routine is incomplete and only uses keys in the reverse order, which is not sufficient for
decryption:

(a, b, c, d) ← (b, c, d, a ⊕ (Fi(b, c, d))),
Fi = F2 for odd rounds and Fi = F1 for the rest.

The server can also process multiple blocks of text at a time: they will be processed one-by-one and then
concatenated, as in the regular ECB cipher mode of operation. Ciphertexts and plaintexts are given and
processed by the server in hexadecimal notation.

Help Cooper to decrypt Y .

2.13.2. Solution. Let fi be the round transformation of round i:

fi : (a, b, c, d) ← (b, c, d, a ⊕ (Fk(i)(b, c, d))),

where k(i) = 1 for odd i and k(i) = 2 otherwise.
Hence, we can represent the encryption transformation E as E = (f1f2)16.
Let I be the incomplete decryption transformation described in the problem statement. The en-

cryption and the incomplete decryption processes only differ in the key order, so I can be written as
I = (f2f1)16.
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The decryption transformation E−1 can be represented as E−1 = (f−1
2 f−1

1 )16, where f−1
i is the

inverse of fi and is given by the transformation

f−1
i : (a, b, c, d) ← (d ⊕ (Fk(i)(a, b, c)), a, b, c).

Thus, to apply E−1 to the ciphertext one should be able to compute F1(x, y, z) and F2(x, y, z) that
are secret. To recover these functions a slide attack can be used.

The idea is to find the words x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) such that fi(x) = y. If such
a pair is found then Fi can be found as Fi(x2, x3, x4) = y4 ⊕ x1.

We use the following idea to find a desired pair: If Efi(x) = E(y) then fi(x) = y. Let us start with F1.
We need a pair of x and y such that Ef1(x) = E(y). This relation can be written as

(f1f2)16f1(x) = (f1f2)16(y), f1(f2f1)16(x) = (f1f2)16(y), f1I(x) = E(y).

We come to a conclusion that if f1I(x) = E(y) then f1(x) = y. The condition f1I(x) = Ey can be
checked by using the definition of f1: if

(I(x))2 = (E(y))1, (I(x))3 = (E(y))2, (I(x))4 = (E(y))3

then it is likely that f1I(x) = E(y). The probability of false positives is approximately 2−96 for random
Fi functions. So, it can be considered as negligible. Both I(x) and E(y) are available on the encryption
oracle for arbitrary x and y as the incomplete decryption and the encryption routines respectively.

To find Fi(a, b, c), let us brute force over x and y of the following forms: x = (X,a, b, c) and y =
(a, b, c,X ′). According to the birthday paradox, a desired pair can be found in 2 ∗ 216 operations average
(instead of 232 if we lock X or X ′ to some constant value).

As soon as we find such a pair x and y, we can compute F1(a, b, c) and apply f−1
1 to the ciphertext

and decrypt the last round. Then F2 can be found in the same way by replacing I and E with each other
due to the symmetry. By doing this round by round, we decrypt the whole ciphertext and get the desired
message (in hexadecimal notation)

acherrypieplease

The reference implementation of this attack requires 222 blocks of text to be encrypted and 10 minutes
of time average. It is important to use the server’s ability to process multiple blocks of text at a time
to minimize the amount of HTTP requests.

Four teams successfully solved the problem using the same method.

2.14. Problem “Curl27”
2.14.1. Formulation. Bob is developing the 3OTA infrastructure and has designed a new hash function
Curl27 for it. A distinguishing feature of the infrastructure is the ternary logic: Trits from the set
T = {0, 1,−1} are used instead of bits, ternary strings and words are used instead of binary ones. The
Curl27 hash function is defined below. Its implementation in Java can be found in [16].

Find a collision for Curl27; i.e., different ternary strings X and X ′ such that Curl27(X) = Curl27(X ′).
Submit colliding strings as two lines of trits separated by commas. An example of a (wrong!) solution is:

−1, 1, 0, 1, 1, 0 −1,−1, 1, 0, 1, 1,−1, 0

Description of Curl27. The Curl27 function maps a ternary string X of arbitrary length to a hash value
from T243. When hashing, an auxiliary sponge function Curl27-f : T729 → T729 is used. The hashing
algorithm is as follows:

(1) Pad X with zeros to make its length a multiple of 243. Divide the resulting string into blocks
X1,X2, . . . ,Xd ∈ T243.

(2) Prepare the state W = W0W1W2 ∈ T729 consisting of words Wi ∈ T243. Initialize the state by
filling W0 and W2 with zeros and W1 with the encoded initial (before padding) length of X. The length
is encoded by a ternary word according to the little-endian conventions: less significant trits go first. For
example, the length 25 = 1 − 31 + 33 is presented by the word 11̄01000 . . . 0

︸ ︷︷ ︸

243

. Here 1̄ stands for −1.
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Fig. 7. Groupings (3 last steps, grouped trits are painted the same color).

(3) For i = 1, 2, . . . , d, do: W0 ← Xi, W ← Curl27-f(W ).
(4) Return W0.

Description of Curl27-f. In Curl27-f the S-box

S : T3 → T3, (a, b, c) 	→ (F (a, b, c), F (b, c, a), F (c, a, b))

is used. Here

F (a, b, c) = a2b2c + a2bc2 − ab2c2 + a2b2 − a2bc + a2c2 + ab2c

− a2c + ab2 − ac2 + b2c + bc2 − a2 − b2 + bc − c2 − c + 1,

where the calculations are carried out modulo 3 while the residue 2 is represented by the trit −1.
To transform the state W , 27 rounds are performed. A round consists of 6 steps. At each step triplets

of trits of W are grouped in a certain way. Then each triplet (a, b, c) is replaced with S(a, b, c).
Groupings are organized as follows (see Fig. 7): At the first step, the state is divided into 3 words of

243 trits. Trits of these words in the same positions are grouped. At the second step, the state is divided
into 9 words of 81 trits. Trits of the 1st, 2nd and 3rd words in the same positions are grouped, then trits
of the 4th, 5th and 6th words, and so on. After that, the state is divided into words of length 27, then
length 9, then length 3, while maintaining the logic of groupings. At the last sixth step, consecutive
triplets of trits are grouped.

A bonus problem (extra scores, a special prize!). Find a collision when the state is initialized in
a different way: Now W0 and W2 are not filled with 0s; in each of them, 011̄011̄ . . . 011̄

︸ ︷︷ ︸

243

is written instead.

2.14.2. Solution. For a word u in the alphabet T, let um be the word of m copies of u. Supposing
u = u0u1 . . . un−1 denote u[m] = um

0 um
1 . . . um

n−1. We call a word of the form u[m] m-fragmented.

Theorem. Let m be a power of 3, m ≤ 729. The sponge function Curl27-f preserves m-fragmenta-
tion; i.e., if W is m-fragmented then Curl27-f(W ) is also m-fragmented.

Proof. At the ith step of the Curl27-f round function, the state W is divided into words of length

n = 36−i, i = 1, 2, . . . , 6.

For n ≤ m the step function preserves equality of trits inside fragments. It follows from the fact that
S(a, a, a) = (b, b, b). For n > m equality is also preserved since in each fragment trits at the different
positions are processed in the same way.

Let m be a small power of 3 (interesting cases are m = 3, 9, and 27). Consider a ternary string X of
length

1 + 3 + 32 + . . . + 3m−1 = (3m − 1)/2.

The length is given by a word of m ones. Consequently, the initial state of Curl27 when processing X is
m-fragmented (one fragment of 1s, the remaining fragments of 0s).

Let us choose trits of X so as to preserve m-fragmentation of the state during hashing. This is easy to
do using the Theorem: Each full m-fragment of X must have the form αm, α ∈ T, and, in addition, trits
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of the last (incomplete) fragment must be zero to be consistent with the padding trits. Having achieved
m-fragmentation of states, we automatically obtain m-fragmentation of hash values. Now a hash value
is determined by 243/m trits each of which is repeated m times. We can find a collision for Curl27 after
processing of about

√
3243/m strings X of the described structure, that is, in time of order

3m ·
√

3243/m = 3m+121.5/m.

The minimum of the above function is achieved at m = 9. During the attack with m = 9 it is required
to process approximately

√
313.5 strings of 9841 = 243 · 40 + 121 trits each.

An example of colliding messages:

X = 0243·39(101100110101111100101100000)[9]0121,

X ′ = 0243·39(000011110100111111001000000)[9]0121.

This collision was found by Jeremy Jean (National Cybersecurity Agency of France), the only participant
who solved the problem.

The preservation of fragmentation is an invariant of Curl27-f which allows to decrease the dimension
and thereby effectively solve the basic problem. To solve the bonus problem, Jeremy Jean proposed to use
another invariant for Curl27-f: If each part W0, W1, W2 of the state W is 3-expanded then this fact also
holds for Curl27-f(W ). Here we call a word U ∈ T243 3-expanded if it has the form (abc)81, abc ∈ T3.

At the initial state, the parts W0 and W2 are indeed 3-expanded. To comply with the invariant, the
part W1 representing the length of a hashed string X must have one of the forms (ab1)81, (a10)81 or
(100)81 (the length is nonzero and positive). As a result, X consists of at least

1 + 27 + · · · + 2780 > 3240 trits.

It is easy to maintain the invariant during hashing: Full 243-fragments of X must be 3-expanded
and the last incomplete fragment (if it exists) must be filled with zeros. The resulting hash values are
3-expanded, there are only 27 choices for them, and a collision will surely be found after processing only
28 strings X. Of course, the attack is impractical: The time of order 3240, which is required only for
recording colliding messages, is unacceptably large even compared to the time 3243/2 of the standard
birthday attack.

2.15. Problem “8-Bit S-Box”

2.15.1. Formulation. Permutations S of the set {0, 1}n or F
n
2 are usually called n-bit S-boxes. We will

focus on the following cryptographic properties of S-boxes:
(1) The (minimal) algebraic degree of S denoted by deg(S) is the minimum of algebraic degrees of

all component functions of S.
(2) The nonlinearity of S denoted by nl(S) is the minimal Hamming distance between all component

functions of S and the set of all affine functions.
(3) The differential uniformity of S denoted by du(S) is the maximal number of solutions of the

equation S(x) ⊕ S(x ⊕ α) = β for any nonzero vector α and any vector β.
(4) The (graph) algebraic immunity of S denoted by ai(S) is the minimal algebraic degree of all

nonzero Boolean functions f in 2n variables such that f(x, y) = 0 for all x ∈ F
n
2 and y = S(x).

In modern symmetric cryptography, S-boxes of dimension n = 8 are probably most popular. For
example, such an S-box is used in the AES block cipher. The characteristics of SAES:

(deg, nl, du, ai)(SAES) = (7, 112, 4, 2).

The value ai(SAES) = 2 means that SAES (and the whole AES) can be compactly described by
quadratic equations. This can be a weakness in the context of algebraic attacks.

Imposing the restrictions (deg, ai)(S) = (7, 3) (optimal values), we need to maximize nl(S) and
minimize du(S). The current best result [17, 18] is (deg, nl, du, ai)(S) = (7, 108, 6, 3).
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A problem for a special prize! You need to improve this result: Find 8-bit S with nl(S) > 108 and/or
du(S) < 6 while preserving deg(S) = 7 and ai(S) = 3.

Remarks. Let us recall the relevant definitions:
(1) A Boolean function f : F

n
2 → F2 can be uniquely represented in the algebraic normal form

(ANF) in the following way:

f(x) =
⊕

I∈P(N)

aI

(∏

i∈I

xi

)

,

where P(N) is the power set of N = {1, . . . , n} and aI ∈ F2.
(2) The algebraic degree of F is the degree of its ANF:

deg(F ) = max{|I| : aI �= 0, I ∈ P(N)}.
(3) Boolean functions of the algebraic degree at most 1 are called affine.
(4) The Hamming distance between Boolean functions f and g is the number of vectors x ∈ F

n
2 such

that f(x) �= g(x).
(5) A function S : F

n
2 → F

n
2 can be given as S = (s1, . . . , sn), where si is a Boolean function;

a nontrivial linear combination of s1, . . . , sn is a component function of S.

2.15.2. Solution. There were no valuable ideas from the Olympiad participants. The problem remains
unsolved for the considered configuration of cryptographic properties. There exist several dozen of
constructions based on the well-known butterfly structure that provide current record (7, 108, 6, 3),
see [17, 18]. This leads to the idea that if candidates for improvement exist then they are likely outside
the known structures and constructions of cryptographic permutations.

2.16. Problem “Conjecture”
2.16.1. Formulation. Let F2 be the finite field with two elements and let n be a positive integer at least 3.
Let f(X) be an irreducible polynomial of degree n over F2. It is known that the set of the equivalence
classes β of polynomials over F2 modulo f(X) is a finite field of order 2n, that we denote by F2n . It is
known that different choices of the irreducible polynomial give automorphic finite fields and such choice
has then no incidence on the algebraic problems on the corresponding fields.

A problem for a special prize! Prove or disprove the following

Conjecture. Let k be co-prime with n. For every β ∈ F2n , let F (β) = βξ, ξ = 4k − 2k + 1. Let

Δ = {F (β) + F (β + 1) + 1; β ∈ F2n}.
For every distinct nonzero v1 and v2 in F2n , we have

∣

∣

{

(x, y, z) ∈ Δ3; v1x + v2y + (v1 + v2)z = 0
}∣

∣ = 22n−3.

Example for n = 3: We can take f(X) = X3 + X + 1, then each element β of the field F23 can be writ-
ten as a polynomial of degree at most 2: a0 + a1X + a2X

2, a0, a1, a2 ∈ F2. The element 0 corresponds
to the null polynomial; and the unity, denoted by 1, corresponds to the constant polynomial 1. We can
calculate the table of multiplication in F23 (the table of addition just corresponds to adding polynomials
of degree at most 2); this allows us to calculate any power of any element of the field and check the
property.

2.16.2. Solution.This mathematical problem is open and difficult. It was presented in [19] for the
first time and discussed in [20]. The conjecture was verified for small n (odd values n � 11, even
values n � 8). The Olympiad participants suggested several ideas. Unfortunately, none of them gave
significant advances to prove the conjecture or search for a counterexample.

The team of Kristina Geut, Sergey Titov, and Dmitry Ananichev (Ural State University of Railway
Transport) and the team of Alexey Zelenetskiy, Mikhail Kudinov, and Denis Nabokov (Bauman Moscow
State Technical University) proved the conjecture for a particular case k = 1. Nevertheless, this case is
peculiar since the function is then quadratic and the result is known for quadratic functions. The proofs
cannot be generalized to the common case.
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3. WINNERS OF THE OLYMPIAD

Summing up the results of the Olympiad, 42 participants in the first round and 21 teams in the second
round from 16 countries were awarded by prizes and honorable diplomas. Tables 10, 11, 12, 13, and 14
illustrate the information about the prize winners of NSUCRYPTO’2019.

All information about the winners can be found on the official website [21].

Table 10. Winners of the first round in School Section A (“School Student”)

Place Name Country, City School Score

1 Borislav Kirilov Bulgaria, Sofia The First Private Mathematical Gymnasium 16

1 Alexey Lvov Russia, Novosibirsk Gymnasium 6 16

2 Lenart Bucar Slovenia, Ljubljana Gymnasium Bezigrad 15

3 Varvara Lebedinskaya Russia, Novosibirsk The Specialized Educational Scientific Center
of Novosibirsk State University

14

3 Gabriel Ericson Sweden, Örebro Tullangsskolan 14

Table 11. Winners of the first round, Section B (in the category “University Student”)

Place Name Country, City University Score

1 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 22

1 Mikhail Kudinov Russia, Moscow Bauman Moscow State Technical University 21

2 Narendra Patel India, Roorkee Indian Institute of Technology Roorkee 19

2 Vladimir Schavelev Russia, Saint Petersburg State University 19
Saint Petersburg

3 Thanh Nguyen Van Vietnam, Ho Chi Minh City University of Technology 16
Ho Chi Minh City

3 Daria Grebenchuk Russia, Yaroslavl Yaroslavl State University 16

3 Roman Gibadulin Russia, Yaroslavl Yaroslavl State University 16

3 Tuong Nguyen Vietnam, Ho Chi Minh City University of Technology 15
Ho Chi Minh City

Table 12. Winners of the first round, Section B (in the category “Professional”)

Place Name Country, City Organization Score

1 Henning Seidler Germany, Berlin TU Berlin 26

2 Samuel Tang Hong Kong, Black Bauhinia 20
Hong Kong

2 Madalina
Bolboceanu

Romania,
Bucharest

Bitdefender 20

3 Irina Slonkina Russia, Moscow National Research Nuclear University 16
MEPhI
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Table 13. Winners of the second round (in the category “University Student”)

Place Name Country, City University Score

1 Alexey Zelenetskiy, Russia, Moscow Bauman Moscow State Technical 51
Mikhail Kudinov, University
Denis Nabokov

2 Ngoc Ky Nguyen, Vietnam, Ho Chi Minh City University 43
Dung Truong, Ho Chi Minh City; of Technology,
Phuoc Nguyen Ho Minh France, Paris Ecole Normale Superieure

2 Thanh Nguyen Van, Vietnam, Ho Chi Minh City University 40
Quoc Bao Nguyen, Ho Chi Minh City of Technology
Ngan Nguyen

3 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 34

3 Ilya Trusevich, Belarus, Minsk Belarusian State University 38
Maxim Bibik,
Alexander Shulga

Table 14. Winners of the second round (in the category “Professional”)

Place Names Country, City Organization Score

1 Irina Slonkina, Russia, Moscow Bauman Moscow State Technical 48
Mikhail Sorokin, University
Vladimir Bobrov

1 Kristina Geut, Russia, Ural State University of Railway 46
Sergey Titov, Yekaterinburg Transport, Ural Federal University
Dmitry Ananichev

2 Henning Seidler, Germany, Berlin Berlin Technical University 42
Katja Stumpp

3 Victoria Vlasova, Russia, Moscow Bauman Moscow State Technical 37
Mikhail Polyakov, University
Alexey Chilikov

3 Duc Tri Nguyen, Vietnam, Cryptographic Engineering Research 36
Quan Doan, Ho Chi Minh Group, pwnphofun, Ho Chi Minh City
Tuong Nguyen City University of Technology

3 Madalina Bolboceanu, Romania, Bitdefender, Alexandru Ioan Cuza 34
Andrei Mogage, Bucharest University
Radu Titiu

Special Jeremy Jean France, Paris National Cybersecurity Agency 20
prize of France
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