
On the Sixth International Olympiad in Cryptography

NSUCRYPTO∗

A. Gorodilova1, N. Tokareva1,2, S. Agievich3, C. Carlet4, E. Gorkunov1,5,
V. Idrisova1, N. Kolomeec1, A. Kutsenko1,5, R. Lebedev5, S. Nikova6,

A. Oblaukhov1, I. Pankratova7, M. Pudovkina8, V. Rijmen6, A. Udovenko9

1Sobolev Institute of Mathematics, Novosibirsk, Russia
2Laboratory of Cryptography JetBrains Research

3Belarusian State University, Minsk, Belarus
4University of Paris 8, Paris, France

5Novosibirsk State University, Novosibirsk, Russia
6ESAT-COSIC, KU Leuven, Leuven, Belgium

7Tomsk State University, Tomsk, Russia
8Bauman Moscow State Technical University, Moscow, Russia

9SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg

E-mail: nsucrypto@nsu.ru

Abstract. NSUCRYPTO is the unique cryptographic Olympiad containing scientific mathe-
matical problems for professionals, school and university students from any country. Its aim is
to involve young researchers in solving curious and tough scientific problems of modern cryp-
tography. From the very beginning, the concept of the Olympiad was not to focus on solving
olympic tasks but on including unsolved research problems at the intersection of mathematics
and cryptography. The Olympiad history starts in 2014. In 2019, it was held for the sixth time.
In this paper, problems and their solutions of the Sixth International Olympiad in cryptography
NSUCRYPTO’2019 are presented. We consider problems related to attacks on ciphers and hash
functions, protocols, Boolean functions, Dickson polynomials, prime numbers, rotor machines,
etc. We discuss several open problems on mathematical countermeasures to side-channel attacks,
APN involutions, S-boxes, etc. The problem of finding a collision for the hash function Curl27

was partially solved during the Olympiad.

Keywords. cryptography, ciphers, hash functions, Hamming code, slide attack, threshold imple-

mentation, Dickson polynomial, APN function, Olympiad, NSUCRYPTO.

∗The work of the first two authors and the sixth author was supported by Mathematical Center in Akademgorodok
under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation
and Laboratory of Cryptography JetBrains Research. The work of the seventh, eighth and eleventh authors was
supported by Russian Foundation for Basic Research (projects no. 20-31-70043, 18-07-01394, 19-31-90093).

1

Introduction

NSUCRYPTO (Non-Stop University Crypto) is the International Olympiad in cryptography that
was held for the sixth time in 2019.

Interest in the Olympiad around the world is significant. This
year, there were hundreds of participants from 26 countries; 42
participants in the first round and 21 teams in the second round
from 16 countries were awarded with prizes and honorable diplo-
mas. The Olympiad program committee includes specialists from
Belgium, France, the Netherlands, the USA, Norway, India, Lux-
embourg, Belarus’, Kazakhstan, and Russia.

Let us shortly formulate the format of the Olympiad. One
of the Olympiad main ideas is that everyone can participate!
Each participant chooses his/her category when registering on the
Olympiad website [15]. There are three categories: “school stu-
dents” (for junior researchers: pupils and high school students),
“university students” (for participants who are currently studying at universities) and “profession-
als” (for participants who have already completed education or just want to be in the restriction-free
category). Awarding of the winners is held in each category separately.

The Olympiad consists of two independent Internet rounds: the first one is individual (du-
ration 4 hours 30 minutes) while the second round is a team one (duration 1 week). The first
round is divided into two sections: A — for “school students”, B — for “university students” and
“professionals”. The second round is common to all participants. Participants read the Olympiad
problems and submit their solutions using the Olympiad website. The language of the Olympiad
is English.

The Olympiad participants are always interested in solving different problems of various com-
plexities at the intersection of mathematics and cryptography. They show their knowledge, creativ-
ity and professionalism. That is why the Olympiad not only includes interesting tasks with known
solutions but also offers unsolved problems in this area. This year, one of such open problems,
“Curl27” (see section 2.14), was partially solved during the second round! All the open problems
stated during the Olympiad history can be found here [16]. On the website we also mark the
current status of each problem. For example, in addition to “Curl27”, the problem “Sylvester
matrices” was solved by three teams in 2018, the problem “Algebraic immunity” was completely
solved during the Olympiad in 2016. And what is important for us, some participants were trying
to find solutions after the Olympiad was over. For example, a partial solution for the problem “A
secret sharing” (2014) was proposed in [9]. We invite everybody who has ideas on how to solve the
problems to send your solutions to us!

The paper is organized as follows. We start with problem structure of the Olympiad in section 1.
Then we present formulations of all the problems stated during the Olympiad and give their detailed
solutions in section 2. Finally, we publish the lists of NSUCRYPTO’2019 winners in section 3.

Mathematical problems and their solutions of the previous International Olympiads in cryptog-
raphy NSUCRYPTO from 2014 to 2018 can be found in [2], [1], [14], [10], and [11] respectively.

1 Problem structure of the Olympiad

There were 16 problems stated during the Olympiad, some of them were included in both rounds
(Tables 1, 2). Section A of the first round consisted of six problems, whereas the section B contained

1

https://nsucrypto.nsu.ru/
https://nsucrypto.nsu.ru/unsolved-problems

seven problems. Three problems were common for both sections. The second round was composed
of eleven problems. Five problems of the second round included unsolved questions (awarded special
prizes from the Program Committee).

Table 1: Problems of the first round

N Problem title Maximum scores

1 A 1024-bit key 4

2 The magnetic storm 4

3 Autumn leaves 4

4 A rotor machine 4

5 Broken Calculator 4

6 A promise 6

N Problem title Maximum scores

1 Autumn leaves 4

2 The magnetic storm 4

3 A rotor machine 4

4 16QAM 8

5 A promise and money 6

6 Calculator 6

7 APN + Involutions 7

Section A Section B

Table 2: Problems of the second round

N Problem title Maximum scores

1 A 1024-bit key 4

2 Sharing 6 + additional scores for open questions

3 Factoring in 2019 8

4 TwinPeaks-3 8

5 Curl27 10 + additional scores for open questions

6 8-bit S-box Unlimited (open problem)

7 A rotor machine 4

8 16QAM 8

9 Calculator 6

10 APN + Involutions (extended) 12 + additional scores for open questions

11 Conjecture Unlimited (open problem)

2 Problems and their solutions

In this section, we formulate all the problems of NSUCRYPTO’2019 and present their detailed
solutions paying attention to solutions proposed by the participants.

2.1 Problem “A 1024-bit key”

2.1.1 Formulation

Alice has a 1024-bit key for a symmetric cipher (the key consists of 0s and 1s). Alice is afraid of
malefactors, so she changes her key everyday in the following way:

1. Alice chooses a subsequence of key bits such that the first bit and the last bit are equal to 0.
She also can choose a subsequence of length 1 that contains only 0.

2. Alice inverts all the bits in this subsequence (0 turns into 1 and vice versa); bits outside of
this subsequence remain as they are.

Prove that the process will stop. Find the key that will be obtained by Alice in the end of the
process.

Example of an operation. 11001 01101110︸ ︷︷ ︸ 011... turns to 11001 10010001︸ ︷︷ ︸ 011...

2

2.1.2 Solution

Let us encode the binary vector of the key as the corresponding decimal number. It is obvious that
this number will increase on the next day, since all the bits on the left from the sequence are not
changing, but the first bit of the sequence turns from 0 to 1. Let us note that this number can not
increase infinitely since the size of the key is restricted by 1024 bits, so, in the very end the key
will be maximal possible and, thus, will consist of all 1s.

Almost all the participants successfully solved the problem.

2.2 Problem “The magnetic storm”

2.2.1 Formulation

A hardware random number generator is a device that generates random sequences consisting of
0s and 1s. Unfortunately, a disturbance caused by a magnetic storm affected this random number
generator. As a result, the device had generated a sequence of 0s of length k (where k is a positive
integer), and then started to generate an infinite sequence of 1s.

Prove that at some point the generator will produce a number 1 . . . 10 . . . 0 that is divisible by
2019.

2.2.2 Solution

Let us prove that a number of form 1 . . . 11 . . . 1 is divisible by 2019. Consider all numbers that
consists only of 1s, since there are infinite quantity of these numbers, there can be found a pair
of numbers A and B such that they have the same remainder when divided by 2019. Therefore,
C = A−B = 1 . . . 10 . . . 0 consisting of m 1s for some natural m is divisible by 2019, and, since 2019
is not divisible by 2 and 5, C∗ = C×10 . . . 0 = 1 . . . 10 . . . 0 is divisible by 2019 for any number of 0s.

There were a lot of correct solutions from the participants.

3

2.3 Problem “Autumn leaves”

2.3.1 Formulation

Read a hidden message!..

2.3.2 Solution

We see different leaves and spaces between them. It looks like a simple substitution cipher was used
there and distinct leaves corresponded to distinct English letters. By English grammar, we can
suppose that the second and the third words are “is a”. Then the first word starts with “a” and by
its structure can be “autumn” (which is very likely as the autumn landscape is depicted). Also, the

leaf is the most common letter in the text and we can guess that it is “e”. Then we see “*ea*”
in the third line that seems to be “leaf”. As a result the last word becomes “fl**e*” that is
“flower”. Finally, we get “Autumn is a second spring when every leaf is a flower” that
is a famous quote by Albert Camus. Almost all the participants read the message.

4

2.4 Problem “A rotor machine”

2.4.1 Formulation

In one country rotor machines were very useful for encryption of information.

Eve knows that for some secret communication a simple rotor machine was used. It works with
letters O, P, R, S, T, Y only and has an input circle with lamps (start), one rotor and a reflector.
See the scheme below.

The input circle and the reflector are fixed in their positions while the rotor can be in one of 6
possible positions. After pressing a button on a keyboard, an electrical signal corresponding to the
letter goes through the machine, comes back to the input circle, and the appropriate lamp shows
the result of encryption. After each letter is encrypted, the rotor turns right (i. e. clockwise) on
60 degrees. Points of different colors on the rotor sides indicate different noncrossing signal lines
within the rotor.

For instance, if the rotor is fixed as shown on the picture above, then if you press the button
O, it will be encrypted as T (the signal enters the rotor via red point, is reflected and then comes
back via purple line). If you press O again, it will be encrypted as R. If you press T then, you will
get S and so on.

Eve intercepted a secret message: TRRYSSPRYRYROYTOPTOPTSPSPRS. Help her to decrypt it keep-
ing in mind that Eve does not know the initial position of the rotor.

2.4.2 Solution

To solve the problem and decrypt the message, one needs to correctly understand the scheme of
work. A key for the cipher is the initial position of the rotor. We denote it by a color of the circle
on the input side of the rotor that corresponds to the letter O. Table 3 represents the encryption
tables depending on the key.

Trying all six possible keys, we find the only one meaningful message POST TO TOP OOPS SORRY

STOP ROTOR that corresponds to the “yellow” key.
Almost all the participants solved the problem. The most interesting solutions were obtained by

creating real models for this rotor machine, for example by a school student Varvara Lebedinskaya

5

Table 3: Encryption tables

O P R S T Y

red T Y S R O P

white R S O P Y T

purple Y R P T S O

O P R S T Y

green S R P O Y T

yellow S T Y O P R

blue R T O Y P S

(The Specialized Educational Scientific Center of Novosibirsk State University), by the team of
Kristina Geut, Sergey Titov, and Dmitry Ananichev (Ural State University of Railway Transport).

2.5 Problem “Broken Calculator”

2.5.1 Formulation

Alice and Bob are practicing in developing toy cryptographic applications for smartphones. This
year they have invented Calculator that allows one to perform the following operations modulo
2019 (that is to get the result as the reminder of division by 2019):

• to insert at most 4-digit positive integers (digits from 0 to 9);
• to perform addition, subtraction and multiplication of two numbers;
• to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y
from her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext
x (using his Calculator) by the rule: x is equal to the remainder of dividing f(y) = y5 +1909y3 +
401y by 2019.

At the most inopportune moment, Bob dropped his smartphone and broke its screen Now, the
button + as well as all digits except 1 and 5 are not working.

Help Bob to invent an efficient algorithm how to decrypt any ciphertext y using Calculator in
his situation. More precisely, suggest a short list of commands, where each command has one of
the following types (1 6 j, k < i):

Si = y, Si = a, Si = Sj − Sk, Si = Sj ∗ Sk,

where a is an at most 4-digit integer consisting of digits 1 and 5 only; for example, a = 1, a = 15,
a = 551, a = 5115, etc.

The first command has to be S1 = y. In the last command, the resulting plaintext x has to
be calculated. We remind that all calculations are modulo 2019. In particular, the integer 2500
becomes 481 and −1000 becomes 1019 immediately after entering or calculations. The shorter the
list of commands you suggest, the more scores you get for this problem.

Example. The following list of commands
calculates x = y2 − 55:

Command Result

S1 = y y

S2 = S1 ∗ S1 y2

S3 = 11 11

S4 = 5 5

S5 = S3 ∗ S4 55

S6 = S2 − S5 y2 − 55

6

2.5.2 Solution

Let us present the original solution by the programm committee that has 14 steps.
Let a ≡m b mean that integers a and b are congruent modulo m. The following relations hold:

f(y) ≡2019 y
5 + 1909y3 + 401y

≡2019 y(y4 − 110y2 + 401)

≡2019 y(y4 − 2 ∗ 55y2 + 552 − 552 + 401)

≡2019 y((y2 − 55)2 − 552 + 5 ∗ 222)

≡2019 y((y2 − 55)2 − 112 ∗ (52 − 5 ∗ 22))

≡2019 y((y2 − 55)2 − 112 ∗ 5)

≡2019 y((y2 − 55)2 − 11 ∗ 55).

Thus, the reminder of division of f(y) by 2019 can be calculated for any y by the list of commands
given in Table 4. A similar solution was found by Borislav Kirilov (Bulgaria, The First Private
Mathematical Gymnasium).

Table 4: List of commands for the programm committee solution

Command Result Command Result Command Result

S1 = y y S4 = S2 − S3 y2 − 55 S7 = S3 ∗ S6 11 ∗ 55
S2 = S1 ∗ S1 y2 S5 = S4 ∗ S4 (y2 − 55)2 S8 = S5 − S7 (y2 − 55)2 − 11 ∗ 55
S3 = 55 55 S6 = 11 11 S9 = S1 ∗ S8 y((y2 − 55)2 − 11 ∗ 55)

Note. The polynomial f(y) = y5+1909y3+401y is the Dickson polynomial D5(y, a) = y5−5y3a+
5ya2 for a = 22 with coefficients taken modulo 2019.

2.6 Problem “Calculator”

2.6.1 Formulation

Alice and Bob are practicing in developing toy cryptographic applications for smartphones. This
year they have invented Calculator that allows one to perform the following operations mod-
ulo 2019:

• to insert at most 4-digit positive integers (digits from 0 to 9);
• to perform addition, subtraction and multiplication of two numbers;
• to store temporary results and read them from the memory.

Suppose that Alice wants to send Bob a ciphertext y (given by a 4-digit integer). She sends y
from her smartphone to Bob’s Calculator memory. To decrypt y, Bob needs to get the plaintext
x (using his Calculator) by the rule x = f(y) mod 2019, where f is a secret polynomial known to
Alice and Bob only.

At the most inopportune moment, Bob dropped his smartphone and broke its screen Now, the
button + as well as all digits except 2 are not working.

Help Bob to invent an efficient algorithm how to decrypt any ciphertext y using Calculator in
his situation if the current secret polynomial is f(y) = y5 + 1909y3 + 401y. More precisely, suggest
a short list of commands, where each command has one of the following types (1 6 j, k < i):

7

Si = y, Si = 2, Si = 222, Si = Sj − Sk,
Si = 22, Si = 2222, Si = Sj ∗ Sk.

The first command has to be S1 = y. In the last command, the resulted plaintext x has to
be calculated. We remind that all calculations are modulo 2019. In particular, the integer 2222
becomes 203 immediately after entering. The shorter the list of commands you suggest, the more
scores you get for this problem.

Example. The following list of commands
calculates x = y2 − 4:

Command Result

S1 = y y

S2 = S1 ∗ S1 y2

S3 = 2 2

S4 = S3 ∗ S3 4

S5 = S2 − S4 y2 − 4

2.6.2 Solution

The polynomial f(y) = y5 + 1909y3 + 401y is the Dickson polynomial D5(y, a) = y5 − 5y3a+ 5ya2

for a = 22 with coefficients taken modulo 2019. The following relations hold:

D5(y, a) = yD4(y, a)− aD3(y, a)

= yD2(D2(y, a), a2)− aD3(y, a)

= y((y2 − 2a)2 − 2a2)− ay(y2 − 2a− a).

For a = 22, the value f(y) can be calculated for any y by the list of commands given in Table 5.

Table 5: List of commands for the programm committee solution

Command Result Command Result

S1 = y y S8 = S7 ∗ S7 (y2 − 2a)2

S2 = 2 2 S9 = S8 − S5 (y2 − 2a)2 − 2a2

S3 = 22 a S10 = S1 ∗ S9 y((y2 − 2a)2 − 2a2)
S4 = S2 ∗ S3 2a S11 = S7 − S2 y2 − 2a− a
S5 = S3 ∗ S4 2a2 S12 = S1 ∗ S11 y(y2 − 2a− a)
S6 = S1 ∗ S1 y2 S13 = S3 ∗ S12 ay(y2 − 2a− a)
S7 = S6 − S4 y2 − 2a S14 = S10 − S13 f(y)

What was surprising that the participants found two solutions that has 11 and 13 steps! These
solutions were awarded by additional points. The solution with 11 steps were found by Madalina
Bolboceanu (Romania, Bitdefender) during the first round (Table 6). The solution with 13 steps
were given by Henning Seidler and Katja Stumpp team (Germany, TU Berlin) during the second
round. Both of the solution were based on the representation f(y) = y((y2 − 44)(y2 − 66)− 222).

2.7 Problem “A promise”

2.7.1 Formulation

Young cryptographers, Alice, Bob and Carol, are interested in quantum computings and really
want to buy a quantum computer. A millionaire gave them a certain amount of money (say, XA

8

Table 6: List of commands for the 11-step solution

Command Result Command Result

S1 = y y S7 = S6 − S4 y2 − 44− 22
S2 = S1 ∗ S1 y2 S8 = S6 ∗ S7 (y2 − 44) ∗ (y2 − 44− 22)
S3 = 2 2 S9 = S4 ∗ S4 222

S4 = 22 22 S10 = S8 − S9 (y2 − 44) ∗ (y2 − 44− 22)− 222

S5 = S3 ∗ S4 44 S11 = S1 ∗ S10 f(y)
S6 = S2 − S5 y2 − 44

for Alice, XB for Bob, and XC for Carol). He also made them promise that they would not tell
anyone, including each other, how much money everyone of them had received.

• Could you help the cryptographers to invent an algorithm how to find out (without breaking
the promise) whether the total amount of money they have, XA + XB + XC , is enough to
buy a quantum computer?
• What weaknesses does your algorithm have (if someone breaks the promise)? Does it always

protect the secret of the honest participants from the dishonest ones?

2.7.2 Solution

This problem is a particular case for the problem “A promise and money” for only three participants
(see section 2.8).

2.8 Problem “A promise and money”

2.8.1 Formulation

A group of young cryptographers are interested in quantum computings and really want to buy a
quantum computer. A millionaire gave them a certain amount of money (say, n cryptographers;
Xi for each of them, i = 1, . . . , n). He also made a promise from them that they would not tell
anyone, including each other, how much money everyone of them had received.

• Could you help the cryptographers to invent an algorithm how to find out (without breaking
the promise) whether the total amount of money they have,

∑n
i=1Xi, is enough to buy a

quantum computer?
• What do you think whether there are such algorithms protecting the secrets of honest par-

ticipants from dishonest ones?
• What weaknesses does your algorithm have (if someone breaks the promise)? Does it always

protect the secret of honest participants from dishonest ones?

2.8.2 Solution

Here we give an idea of the solution proposed by Mikhail Kudinov (Bauman Moscow State Technical
University).

First of all, it is supposed that no one can buy a quantum computer himself without other
participants. Let us assume that N ′ is the amount of money that one needs to buy a quantum
computer and N = nN ′, where n is the number of participants. The millionaire gave them Xi

9

money for i ∈ {1, . . . , n}. Each of participants chooses random secrets si,j uniformly so that

n∑
j=1

si,j ≡ Xi (mod N).

Then each of then gives the share si,j to the owner of Xj by the secure channel. After this procedure,
the owner of Xi has shares sk,i for each k ∈ {1, . . . , n}. It is obvious that

n∑
j=1

n∑
i=1

si,j =
n∑
i=1

Xi (mod N).

Under the first suggestion, all participants can together calculate the common amount of money.
The main disadvantage of the algorithm, in addition to the sugges-

IBM’s 50 qubit quantum

computing system [21]

tion, is a big amount of private communication (though the number
of keys can be n for asymmetric schemes).

Analogically, many participants described algorithms similar to
Schneier’s calculating average salary algorithm [13]. In general, all
such algorithms are vulnerable if n − 1 participants are dishonest.
Some participants tried to describe a possibility to use a cryptosystem,
that is homomorphic by “+” and preserves relation “<”, as a general
analysis.

The problem of the first school round is the same problem for
n = 3 (score assignment was more loyal). Despite there was a quite
big number of solutions for this problem in the student round, each
solution had big or small lacks in analysis of the general case, in
analysis of the algorithm advantages and disadvantages, in description
of communications (number of private communications, what kind of
cryptography is used, number of required private keys) and so on. As
a result, there was no possibility to chose “best of the best” for 6
scores and we decided to give 5 scores as maximum. There were nine
maximal-scored solutions.

2.9 Problem “16QAM”

2.9.1 Formulation

For sending messages, Alice and Bob use a fiber-optic communication via 16QAM technology. This
technology allows to send messages whose alphabet consists of 16 letters, where each letter is usually
encoded with a 4-bit Gray code. While a message is transmitted in the channel, single errors in
codewords of the Gray code are possible.

Alice has read an interesting book and would like to share her enthusiasm with Bob! Alice sent
a short fragment from the book to Bob. Due to the characteristics of the communication channel
used, she divided the text into two parts and sent them separately. In the first part, she placed
all of the 16 consonants that occurred in this fragment; in the second part, she placed vowels (“y”
is a vowel), a space, a hyphen and punctuation marks. Then Alice also encoded the letters with
Hamming code to be able to correct single errors. She applied a 7-bit Hamming code with the
parity-check matrix whose columns are written in lexicographical order.

Bob received the following two parts of ciphertext (given in hexadecimal notation):

10

Part 1 Part 2
66674C36666F43D3C199900AA1AA325992A

67A59D9B4A8B69330D1BC000153367A5E33

D30E6692D0F349D3321FFFF0ED706667A7F

670D999679F4AA67561BA679B4AA54F34D5

AB0F4AACCF000055CE633670D9DA54CE37F

660DE19CD995335495523CCAAA8F1E03325

86CF48A98CD9B387FD9D546A99E9D200033

3201513FE5B4AA00CCCE9667554CD2CCCB3

330F32A666553CD756AC3E0674E9D369E1D

C6A9999780007F00961E66465519FEA8B25

14CCCB332AA63332CCCE6D2A99AACCCC004

66CA61967319CCD2CE76998CE6433332D19

B46784C65334E999A402ADA0265A99A6633

33319B32D3299698CCC96986619967134CC

B4CE23333334CC6730CE90170CCCD2CE669

996A61999EA63332CCA4C3332D4CD3334CC

D3319994730CCCD3A6669D96A66999699B3

98640CC86CE619676AD4CD3308999866D33

79321C33210B4C6732199B53218019A404C

D2DE65A986663398CCCCCB5319CC6665997

B96A63398CD9CCD2CD9A399A66339866619

98CD9CC325A6339CCE619998C04C66CE633

996A61998CF66967334CC66CA6199865E(0)2

Also, he received the following number sequence: 22, 19, 3, 3, 36, 53, 3, 33, 20, 28. Each number
indicates how many consonants are contained between the punctuation marks.

Recover the text and find the main character of the book Alice has read!

2.9.2 Solution

Some details in the problem statement are insignificant. Namely, we could omit the step with the
Gray code and mind that Alice substitutes 7-bit codewords of the Hamming code for each symbol
in each part of the plaintext.

The crucial idea to broke the cipher Alice and Bob use is analyzing the frequency distribution
in each part of the ciphertext. This helps to deduce the probable meaning of the most common
symbols and form partial words. Tentative search for combinations of consonants and vowels giving
actual words in English expands the partial solution. Frequencies of pairs of letters also give an
improvement but it could seem inessential. At last, one can employ search engine on the Internet
to find the fragment of the book that Alice sent to Bob.

Let us consider a possible solution. Alice uses the Hamming code with the parity check matrix
H and the corresponding generator matrix G, where

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 , G =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .
First, rewrite each part of the given ciphertext in the binary form. Split them into 7-bit words and
correct errors using the parity check matrix H. One can decode the Hamming code into a 4-bit
Gray code but it is not a necessary step for the solution. Calculating frequencies of codewords
separately in each part of the given ciphertext, we put them in Table 7.

11

Table 7: Frequencies of Hamming codewords in the text

Gray code Hamming code Frequency

1011 0110011 46
0010 0101010 30
1001 0011001 24
0001 1101001 24

0011 1000011 19
0000 0000000 15
0110 1100110 13
1100 0111100 8

1111 1111111 8
1101 1010101 7
0100 1001100 6
1110 0010110 5

1010 1011010 5
0101 0100101 4
1000 1110000 4
0111 0001111 2

Gray code Hamming code Frequency

0100 1001100 85
1011 0110011 50
1001 0011001 33
0001 1101001 26

1010 1011010 17
0011 1000011 9
0000 0000000 8
1110 0010110 7

1100 0111100 2
0010 0101010 1
1000 1110000 1
0111 0001111 0

0101 0100101 0
1101 1010101 0
0110 1100110 0
1111 1111111 0

a) Part 1 b) Part 2

Compare the frequencies obtained with those of letters in the English language. The suitable
frequency distribution can be found in [12], which is cited, e. g., at [20]. According to Lewand,
arranged from most to least common in appearance, the letters are:

e t a o i n s h r d l c u m w f g y p b v k j x q z.

We start with vowels, punctuation marks, spaces, and a hyphen, which are placed in Part 2.
Make a guess that the most frequent symbol in Part 2 is the space. It is also worth to note
that most of punctuation marks are followed by a space in contrast to a hyphen, which is usually
embraced by letters. Using letter frequencies, we determine the probable spaces, vowels, and
hyphen, and construct the following partial solution for this part of the plaintext (the sign #

substitutes punctuation):

ee ae e oe o e ua iaia# e oo oy-oy i o ea ee# u# ea# auae o ie ea o e aoy a oe

o i a i eae# a i o o o eae a oo o i o iee ay ue aeii o aa aie# uuay# e uai uy oy

oe i a e ea i e eae# i e ee oeee o e a a ee a# e e a uy ee e i a e oe o ee a a#

Let us turn to Part 1, which contains 16 consonants occurring in the fragment of the book.
Let us order the codewords of the Hamming code from most to least frequent in Part 1, as it is
shown in Table 7a. Denote the 7-bit codewords by hexadecimal numbers from 0 till F. Then we get
the following ciphertext of 220 symbols in length that is splitted into 10 pieces (according to the
number sequence given in the task):

023402C43E0251412B0103 02C1B32407551003703 4A3 B46 33A4884CE02E804020631094106311739943

1675510A0040C1068047266101D10619FF56D4031A00048090103 355

025108B315023021A3020246102173994 E2333C72410275585D46 021281BD102021A0202631016055

Then we match symbol frequencies in Part 1 of the ciphertext with those of consonants in the
English alphabet. The first five pairs are like as follows: 0 - t, 1 - n, 2 - s/h, 3 - s/h, 4 - r.

The bigram th is the most frequent in English. This allows us to make a suggestion that 2

substitutes h and 3 substitutes s. Then we obtain a partial solution for Part 1 and, combining
with one for Part 2, get the following pieces of the plaintext given in Table 8. It is not difficult
to recognize words these are the at the beginning in (1). Also, we can see the as the first word
in (2) and (8).

12

Table 8: Partial plaintext

No. Partial plaintext
(1) thsrthCrsEth5nrnhBtnts

ee ae e oe o e ua iaia#

(2) thCnBshrt755ntts7ts

e oo oy-oy i o ea ee#

(3) rAs

u#

(4) Br6

ea#

(5) ssAr88rCEthE8trtht6snt9rnt6snn7s99rs

auae o ie ea o e aoy a oe o i a i eae#

(6) n6755ntAttrtCnt68tr7h66ntnDnt6n9FF56DrtsnAtttr8t9tnts

a i o o o eae a oo o i o iee ay ue aeii o aa aie#

(7) s55

uuay#

(8) th5nt8Bsn5thsthnAsththr6nthn7s99r

e uai uy oy oe i a e ea i e eae#

(9) EhsssC7hrnth75585Dr6

i e ee oeee o e a a ee a#

(10) thnh8nBDnththnAthth6sntn6t55

e e a uy ee e i a e oe o ee a a#

The best idea for the next step is to search through the English dictionary for words that have
given vowels in the prescribed order. It is possible to use one of the tools for pattern recognition
available on the Internet, e. g., [19]. Advanced participants of the Olympiad implemented some
computer programs on their own.

Consider several examples. We have a word with consonants s55 and vowels uuay in (7), and
the last two consonants are identical. The only match is usually, so we assume that 5 substitutes
the letter l. The pattern auae in combination with double s gives us two possibilities in (5) –
assuage and sausage. In any case, it seems like A means g. Then we have rugs in (3). The
pattern uai and consonants 5nt8B lead us to lunatic in (8), so 8 probably means c.

At this point we revise our matching the letters and their frequencies corresponding to the
Part 1 of the ciphertext. Let us look at the first eight letters with large frequencies: t n h s r l

6 7/c. We can see that the letter d has still been hidden. According to the Lewand distribution
it is the most probable that 6 means d. Then (4) contains Brd and ea what gives us possible words
beard and bread. Therefore, it seems like B substitutes b.

A thoroughly analysis of the remaining ciphertext and search for words by patterns and number
of letters eventually lead us to the plaintext (with punctuation replaced by #):

these are the mores of the lunar inhabitants# the moon boy-shorty will not eat

sweets# rugs# bread# sausage or ice cream of the factory that does not print

ads in newspapers# and will not go to treatment a doctor who did not invented

any puzzle advertising to attract patients# usually# the lunatic buys only

those things that he read in the newspaper# if he sees somewhere on the wall

a clever ad# then he can buy even the thing that he does not need at all#

This is a fragment of the fairytail novel “Dunno on the Moon” by Russian writer Nikolay Nosov.
The title character of the novel is a boy-shorty Dunno. The problem was completely solved by 13
teams in the second round and by Samuel Tang (Hong Kong, Black Bauhinia) in the first round.

13

The best solutions were proposed by the team of Irina Slonkina, Mikhail Sorokin, and Vladimir
Bobrov (Bauman Moscow State Technical University), and the team of Vladimir Paprotski, Dmitry
Zarembo, and Karina Kruglik (Belarusian State University).

2.10 Problem “APN + Involutions”

The first three questions Q1, Q2, Q3 were given as the problem “APN + Involutions” in the first
round. The extended version of the task for the second round included also the question Q4 that
contains open problems.

2.10.1 Formulation

Alice wants to construct a block cipher with heavy use of involutions as subcomponents; this
minimizes difference between the algorithms for encryption and decryption. She knows that APN
permutations are the best choice of subcomponents to resist attacks based on differential tech-
nique. She wants to construct a set of APN permutations that are involutions for every n > 2.

Alice knows that any involution can be expressed as the product of disjoint transpositions.
So, she decides to study the following involution

g =
d∏
i=1

(
αi, α

′
i

)
,

where {αi, α′i} ∩ {αj , α′j} = ∅ for all i, j ∈ {1, ..., d}, i 6= j, 1 6 d 6 2n−1.

Alice needs your help to get APN permutations among such involutions g. Find answers to the
following questions!

Q1 Let
Λ(g) =

{
αi ⊕ α′i : i = 1, ..., d

}
, Λ̂(g) =

[
αi ⊕ α′i : i = 1, ..., d

]
,

B(g) =
{
x⊕ y : {x, y} ⊆ FixP(g), x 6= y

}
, B̂(g) =

[
x⊕ y : {x, y} ⊆ FixP(g), x 6= y

]
,

where FixP(g) is the set of all fixed points of g, i. e. FixP(g) = {x ∈ Fn2 : g(x) = x} .

Suppose that g is an APN permutation. Get necessary conditions for multisets Λ̂(g), B̂(g) and
sets Λ(g), B(g). Prove that if your conditions do not hold, then g is not an APN permutation.

Q2 Let
da,b(g) = |{x ∈ Fn2 : g(x⊕ a)⊕ g(x) = b}|, a, b ∈ Fn2 .

Let g be an involution and APN. Find da,a(g) for each nonzero a ∈ Fn2 .

Q3 Can you get the nontrivial upper bound on |FixP(g)|?

Q4 Let Mn be the set of all n-bit involutions that are APN permutations.

(a) Can you find the cardinality of Mn for n = 2, 3, 4?

(b) Can you find the cardinality of Mn for n = 5?

(c) Bonus problem (extra scores, a special prize!)

Let n > 6. Can you get the lower and the upper bounds for the cardinality of Mn?
Can you describe involutions from Mn? Can you suggest constructions for involutions
from Mn?

14

Note that the mapping x 7→ x−1 in the Galois field GF (2n) belongs to Mn for odd n > 3.

Remark. Let us recall relevant definitions.

• Fn2 is the vector space of dimension over F2 = {0, 1}.
• A vector x ∈ Fn2 has the form x = (x1, ..., xn), where xi ∈ F2. For two vectors x, y ∈ Fn2 their

sum is x⊕ y = (x1 ⊕ y1, ..., xn ⊕ yn), where ⊕ stands for XOR operation.
• Let X̂ =

[
x1, ..., xd

]
be a multiset with the underlying set Fn2 , where x1, ..., xd ∈ Fn2 .

Note that all elements in a set are distinct. Unlike a set, a multiset allows for multiple
instances for each of its elements.
• A permutation s is a mapping from Fn2 to Fn2 such that s(x) 6= s(y) for all x, y ∈ Fn2 , x 6= y.
• An involution s is a permutation that is its own inverse, s2(x) = s(s(x)) = x for all x ∈ Fn2 .
• For any different vectors α, β ∈ Fn2 , a permutation s is called a transposition if s(α) = β,
s(β) = α and s(x) = x for all x ∈ Fn2\{α, β}; it is denoted by s = (α, β).
• A permutation s is called APN (Almost Perfect Nonlinear) if, for every nonzero a ∈ Fn2 and

every b ∈ Fn2 , the equation s(x⊕ a)⊕ s(x) = b has at most 2 solutions.

2.10.2 Solution

Q1 Let a ∈ Λ(g). Hence, a = x⊕ y, where y = g(x) and (x, y) = (αi, α
′
i) for some i. Then

g(x⊕ a) = g(y) = x = y ⊕ a = g(x)⊕ a.

Let a ∈ B(g). Hence, a = x⊕ y, where x, y ∈ FixP(g). Then

g(x⊕ a) = g(y) = y = x⊕ a = g(x)⊕ a.

Thus, da,a(g) > 2 for any vector a ∈ Λ(g) ∪ B(g).

Let g be an APN permutation. Then da,a(g) = 2. Hence, the multiplicity of all elements

from Λ(g) and B(g) is 1. Thus, Λ(g) = Λ̂(g) and B(g) = B̂(g). Note that Λ(g) ∩ B(g) = ∅.

Q2 Since g is an APN permutation, then da,a(g) 6 2. As we get in Q1, da,a(g) = 2 for any vector
a ∈ Λ(g) ∪ B(g). Let us prove that da,a(g) = 0 for a /∈ Λ(g) ∪ B(g).

Let a be a nonzero vector and x be a solution of g(x⊕a)⊕g(x) = a. Since g is a permutation,
then either x ∈ FixP(g) or x = αi (x = α′i) for some i. Consider two cases:

1. Let x ∈ FixP(g). Then, g(x ⊕ a) ⊕ g(x) = a implies g(x ⊕ a) = x ⊕ a. Hence, x ⊕ a ∈
FixP(g). As a result, a ∈ B(g).

2. Without loss of generality, let x = αi for some i and y = x ⊕ a. If y ∈ FixP(g), then
g(x ⊕ a) ⊕ g(x) = a implies g(x) = x, which is a contradiction. Hence, without loss of
generality, y = α′j for some j (so, we have αi ⊕ α′j = a). Then

g(αi ⊕ a)⊕ g(αi) = a ⇒ g(α′j)⊕ α′i = a ⇒ αj ⊕ α′i = a.

Let us show that α′i and αj is also solutions. Indeed,

g(α′i ⊕ a)⊕ g(α′i) = g(αj)⊕ αi = α′j ⊕ αi = a

and
g(αj ⊕ a)⊕ g(αj) = g(α′i)⊕ α′j = αi ⊕ α′j = a.

Thus, if i 6= j, we get at least 3 solutions that is contradiction for the APN property of
g. Hence, j = i and a ∈ Λ(g).

15

Q3 Let us prove that |FixP(g)| 6 1 + (2n−1 − 1)1/2.

The involution g is APN. From Q1 we have

B(g) ∩ Λ(g) = ∅. (1)

Let q = |FixP(g)|. Since g is an involution, we have that q is even. From equality (1) and
Λ(g) ∪ B(g) ⊆ Fn2\{0} it follows that

|Λ(g)|+ |BB(g)| 6 2n − 1. (2)

Since |B(g)| =
(
q
2

)
, |Λ(g)| = 2n−1 − q/2, we have

|Λ(g)|+ |BB(g)| = q(q − 1)/2 + 2n−1 − q/2.

From inequality (2), we get

q(q − 1)/2 + 2n − q 6 2n − 1.

Thus,
q(q − 2)/2 6 2n−1 − 1,

i. e.
q 6 1 + (2n−1 − 1)1/2.

Q4 (a) It could be computationally verified that M2 = ∅ and |M3| = 224. Then, it is known [3]
that there are no APN permutations for n = 4. Hence, M4 = ∅.

(b) Let us recall several definitions. A function A : Fn2 → Fn2 is affine if A(x ⊕ y) =
A(x) ⊕ A(y) ⊕ A(0) for any x, y ∈ Fn2 . Two functions F,G : Fn2 → Fn2 are called affine
equivalent if there exist affine permutations A1, A2 such that F = A1 ◦F ◦A2. It is easy
to see that the APN permutation property of a function is an invariant under the affine
equivalence. There exist [3] only five the affine equivalence classes of APN permutations.
Moreover, by [3, theorem 3] only one class contains functions together with their inverses.
Hence, only this class of APN permutations can contain involutions. The representative
of this class is the famous inverse function over the finite field: F (x) = x−1 for nonzero
x and F (0) = 0 (here, functions from Fn2 to Fn2 are considered as functions over the finite
field of order 2n). The inverse function is an involution. Thus, all APN involutions for
n = 5 are affine equivalent to the inverse function.

(c) There were no interesting suggestions by the participants for these open problems.

The unique full correct solution in the first round was proposed by Henning Seidler (Germany,
TU Berlin). In the second round, the best solution for 11 scores was proposed by the team of
Kristina Geut, Sergey Titov, and Dmitry Ananichev (Russia, Ural State University of Railway
Transport, Ural Federal University).

2.11 Problem “Sharing”

2.11.1 Formulation

Bob is interested in studying mathematical countermeasures to side-channel attacks on block ci-
phers. He found out that techniques such as special sharings of functions can be applied. Now he
is thinking about the following mathematical problem in this approach.

16

Let F denote the set of invertible functions (permutations) from F4
2 to F4

2 and Fn denote
the set of invertible functions from (F4

2)
n to (F4

2)
n. Let F ∈ Fn be

F (x1, x2, . . . , xn) = (F1(x1, x2, . . . , xn), F2(x1, x2, . . . , xn) . . . , Fn(x1, x2, . . . , xn)),

with component functions Fi : (F4
2)
n → F4

2, i = 1, . . . , n.

For any f ∈ F , a function F ∈ Fn is called a sharing of f if

n∑
i=1

Fi(x1, x2, . . . , xn) = f

(
n∑
i=1

xi

)
for all (x1, x2, . . . , xn) ∈ (F4

2)
n.

Moreover, F is a non-complete sharing of f if F is a sharing of f with the additional property
that each component function Fi is independent of xi.

Bob needs your help to study functions for which non-complete sharing exists. Find answers to
the following questions!

Q1 Let A denote the set of affine functions from F4
2 to F4

2. Two functions f, g ∈ F are affine
equivalent if there exist a, b ∈ A such that g = b ◦ f ◦ a.

Let f, g be two functions in the same affine equivalence class of F and let F be a non-complete
sharing of f . Derive from F a non-complete sharing for g.

All functions of the same affine equivalence class have the same degree. It is known [4] that
this equivalence relation partitions F into 302 classes: 1 class corresponds to A, 6 classes contain
quadratic functions, 295 classes contain cubic functions.

Also, Bob knows that when n > 5, there exists a non-complete sharing for each f ∈ F (it can
be shown by construction). When n = 2 a non-complete sharing exists only for the functions in A.
When n = 3, non-complete sharings exist for A and also for 5 out of the 6 equivalence classes
containing quadratic functions. When n = 4, non-complete sharings exist for A, for all 6 quadratic
equivalence classes and for 5 cubic classes.

Q2 Bonus problem (extra scores, a special prize!)

Find a concise mathematical property that a function f ∈ F must have in order that a
non-complete sharing F exists for n = 3, 4.

Q3 Bonus problem (extra scores, a special prize!)

Generalize to functions over F5
2, F6

2.

2.11.2 Solution

Q1 Let f, g be two functions in the same affine equivalence class of F , that is g = b ◦ f ◦ a for
some a, b ∈ A, and let F ∈ Fn be a non-complete sharing of f . At first, one can notice that
since f, g are invertible, the mappings a, b must be invertible as well. Let us denote

a(x) = Ax+ a′, x ∈ F4
2,

b(x) = Bx+ b′, x ∈ F4
2,

where A,B are nonsingular binary matrices of order 4× 4 and a′, b′ ∈ F4
2.

17

Using components functions {Fi}ni=1 of F , we define the invertible function G ∈ Fn with
components functions

Gj (x1, x2, ..., xn) =

{
BF1 (Ax1 + a′, Ax2, ..., Axn) + b′, j = 1,

BFj (Ax1 + a′, Ax2, ..., Axn) , j 6= 1,

where j = 1, 2, ..., n.

Then for any (x1, x2, ..., xn) ∈
(
F4
2

)n
, it holds

n∑
j=1

Gj (x1, x2, ..., xn) = BF1

(
Ax1 + a′, Ax2, ..., Axn

)
+ b′+

+

n∑
j=2

BFj
(
Ax1 + a′, Ax2, ..., Axn

)
= B

 n∑
j=1

Fj
(
Ax1 + a′, Ax2, ..., Axn

)+ b′ =

= Bf
(
Ax1 + a′ +Ax2 + . . .+Axn

)
+ b′ = Bf

[
A

(
n∑
i=1

xi

)
+ a′

]
+ b′ =

= b ◦ f ◦ a

(
n∑
i=1

xi

)
= g

(
n∑
i=1

xi

)
.

Therefore, the function G ∈ Fn defined as

G (x1, x2, ..., xn) = (G1 (x1, x2, ..., xn) , G2 (x1, x2, ..., xn) , ..., Gn (x1, x2, ..., xn)) ,

is a sharing of g.

From non-completeness of F it follows that Gj , which is in fact an affine transformation of
Fj , does not depend on xj . Hence, G is a non-complete sharing of g.

Q2-Q3 These open problems were not solved completely during the Olympiad. Nevertheless, one per-
spective solution was proposed by the team of Victoria Vlasova, Mikhail Polyakov, and Alexey
Chilikov (Bauman Moscow State Technical University). They found a sufficient condition for
the existence of non-complete sharing for n = 3. Let us describe it here.

Let wt(y) be the Hamming weight of a binary vector y. For σ ∈ F2, we denote

δσ(y) =

{
y, σ = 1,

0, σ = 0,

where 0 is a zero vector of the same dimension as y.

Let V be a vector space over the field K and assume that for the invertible function f : V → V
it holds ∑

σ∈Fn
2

(−1)wt(σ)f

(
n∑
i=1

δσi (xi)

)
= 0, (3)

then there exists a non-complete sharing for f . Further we conider the case n = 3.

Indeed, for any (x1, x2, x3) ∈ V 3 put

F1 (x1, x2, x3) = f (x2)− f (x2 + x3) ,

18

F2 (x1, x2, x3) = f (x3)− f (x1 + x3) ,

F3 (x1, x2, x3) = f (x1)− f (x1 + x2) .

It is clear that every Fi : V 3 → V does not depend on xi, where i = 1, 2, 3. Consider the
expression

3∑
i=1

Fi (x1, x2, x3) = f (x2)− f (x2 + x3) + f (x3)− f (x3 + x1) + f (x1)− f (x1 + x2) =

=
∑
σ∈F3

2

(−1)wt(σ)f

(
3∑
i=1

δσi (xi)

)
+ f (x1 + x2 + x3)− f(0) = f (x1 + x2 + x3)− f(0).

Without loss of generality we assume that f(0) = 0, otherwise we can consider the initial
problem for the function g(x) = f(x) − f(0) with g(0) = 0 and which, by the arguments
from Q1, has non-complete sharing if and only if f does.

Finally
3∑
i=1

Fi (x1, x2, x3) = f (x1 + x2 + x3) ,

that concludes the proof.

It was also shown by the authors that the condition (3) is necessary for the existence of
non-complete sharing of f for any n.

Taking V = Fm2 with m = 4, 5, 6 and K = F2 one can obtain a solution of Q2, Q3 for the
case n = 3.

2.12 Problem “Factoring in 2019”

2.12.1 Formulation

Nicole is learning about the RSA cryptosystem. She has chosen random 500-bit prime numbers p
and q, 2499 6 p, q < 2500, and computed n = p · q. Being a curious and creative person, she has
also combined the three numbers in funny ways. Her favorite one is an integer h such that

h ≡ 32019p2 + 52019q2 (mod n2 + 8 · 2019).

Unfortunately, she has lost the paper where she wrote the two prime numbers. Luckily, she
remembers n and h. Help Nicole to recover p and q.

n = 40763613025504836845249840044831561583564626405535158138667037

18791672670905308860844304055285019651507728831663677166092475

16155419756121537288444995708421977847213953345126368990185271

10259760189356588305406519080647582874212687596214191915933827

67252094717222418132289251314647500491996323400002019,

19

h = 78307999278336577586961528110240026923828914927526911949501196

64549497756373569985393554661132717198368717093111812566649031

17342818449633588647098544612151278035131454234786653136500887

08830470996542888912418213532073622903727205396807848603735835

72653630883685906916701587362236649126895719656663293825501223

97088799629252601249428062432254738935764304610281613264225641

74990272864680012560095992125783832230234589257650929348364268

48117494065463529201859600747521892957258104033195441014023432

36581529201392185327635674923459290749241831590661903965132514

2154451518308886658505820006667836934411881.

2.12.2 Solution

This problem is based on a (simplified) variation of the Coppersmith method.
Let m = n2 + 8 · 2019. It is a composite number with unknown factors. The idea is to find an

integer a such that numbers

a1 = a · 32019 mod m, and

a2 = a · 52019 mod m

are small enough and a1p
2 + a2q

2 exceeds the modulus m by a small amount and can be recovered
from a · h mod m. This can be done using the Lagrange-Gauss algorithm (which is a special case
and the building block of the LLL algorithm). Let Λ be the lattice spanned by the two vectors

v1 =
(
1, (52019 · (32019)−1 mod m)

)
,

v2 =
(
0, m

)
.

Consider an arbitrary vector v = (a1, a2) in this lattice. It is easy to verify that

a1p
2 + a2q

2 ≡ a1 · h · (32019)−1 (mod m).

The lattice reduction guarantees to find such vector v with the norm

‖v‖ =
√
a21 + a22 ≤ 2(d−1)/4(det Λ)1/d =

√
m/

4
√

2,

where d = 2 is the dimension of the lattice. In particular,

|a1p2 + a2q
2| ≤ n(p2 + q2) < n(p+ q)2 < 10n2,

where the last two inequalities follow from balancedness of the primes (i.e., max(p, q) ≤ 2 min(p, q)).
It follows that there exists an integer z, |z| < 10, such that

a1 · h · (32019)−1 mod m+ zm = a1p
2 + a2q

2.

As a result, we obtain an equation in p2 and q2. By replacing p = n/q, we obtain a biquadratic
equation in q which is easy to solve and factor n.

20

The final solution is:

p = 20190000758781541816811298104144770223468182091751945248792088

90921501144547048007953722271285690350264116081579241189587393

202602664199899594021414383,

q = 20190000739734941945213398056820939591822657460839955948263937

53631669289175827851666668014167119439386543289850940734885806

826120718179729242641026893.

The best solution was proposed by Alexey Zelenetskiy, Mikhail Kudinov, and Denis Nabokov
team (Russia, Bauman Moscow State Technical University).

2.13 Problem “TwinPeaks3” (online)

2.13.1 Formulation

As Bob’s previous cipher TwinPeaks2 (NSUCRYPTO-2018) was broken again, he finally decided
to read some books on cryptography. His new cipher is now inspired by practical ciphers, while the
number of rounds was reduced a bit for better performance.

Not only the best techniques were adopted by Bob, but also he decided to enhance his cipher
by security through obscurity, so the round functions are now unknown. The only thing known
about these functions is that they are the same for odd and even rounds.

New Bob’s cipher works as follows. A message X is represented as a binary word of length 128.
It is divided into four 32-bit words a, b, c, d and then the following round transformation is applied
32 times:

(a, b, c, d)← (b, c, d, a⊕ (Fi(b, c, d)))
Fi = F1 for odd rounds and Fi = F2 for the rest.

Here F1 and F2 are secret functions accepting three 32-bit words and returning one word; and ⊕
is the binary bitwise XOR. The concatenation of the final a, b, c, d is the resulting ciphertext Y for
the message X.

Agent Cooper again wants to read Bob’s messages. He caught the ciphertext

Y = e473f19a247429ab33b66268d57dd241

(the ciphertext is given in hexadecimal notation, the first byte is e4).

21

He was also able to gain access to Bob’s testing server with encryption and decryption routines,
using the secret key. Here it is [17]. Unfortunately, the version of software available on this server
is not final. So, the decryption routine is incomplete and only uses keys in the reverse order, which
is not sufficient for decryption:

(a, b, c, d)← (b, c, d, a⊕ (Fi(b, c, d)))
Fi = F2 for odd rounds and Fi = F1 for the rest.

The server can also process multiple blocks of text at a time: they will be processed one-by-one and
then concatenated, as in the regular ECB cipher mode of operation. Ciphertexts and plaintexts
are given and processed by the server in hexadecimal notation.

Help Cooper to decrypt Y .

2.13.2 Solution

Let fi be the round transformation of round i:

fi : (a, b, c, d)← (b, c, d, a⊕ (Fk(i)(b, c, d))),

where k(i) = 1 for odd i and k(i) = 2 for the rest.
Hence, we can represent the encryption transformation E as

E = (f1f2)
16.

Let I be the incomplete decryption transformation described in the problem statement. The
encryption and the incomplete decryption processes only differ in key order, so I can be written in
terms of fi:

I = (f2f1)
16.

The decryption transformation E−1 can be represented as

E−1 = (f−12 f−11)16,

where f−1i is the inverse of fi and is given by the following transformation:

f−1i : (a, b, c, d)← (d⊕ (Fk(i)(a, b, c)), a, b, c)

Thus, to apply E−1 to the ciphertext one should be able to compute F1(x, y, z) and F2(x, y, z)
that are secret. To recover these functions a slide attack can be used.

The idea is to find words x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) such that fi(x) = y. If such
a pair is found, then Fi can be found as

Fi(x2, x3, x4) = y4 ⊕ x1.

We use the following idea to find a desired pair: if Efi(x) = E(y), then fi(x) = y. Let us start
with F1. We need a pair of x and y such that Ef1(x) = E(y). This relation can be written as

(f1f2)
16f1(x) = (f1f2)

16(y)
f1(f2f1)

16(x) = (f1f2)
16(y)

f1I(x) = E(y)

22

https://nsucrypto.nsu.ru/archive/2019/round/2/task/4/

We come to a conclusion that if f1I(x) = E(y), then f1(x) = y. The condition f1I(x) = Ey
can be checked by using the definition of f1: if (I(x))2 = (E(y))1, (I(x))3 = (E(y))2 and (I(x))4 =
(E(y))3, then it is likely that f1I(x) = E(y). The probability of false positives is approximately
2−96 for random Fi functions. So, it can be considered as negligible. Both I(x) and E(y) are
available on the encryption oracle for arbitrary x and y as the incomplete decryption and the
encryption routines respectively.

To find Fi(a, b, c), let us brute force over x and y of the following forms: x = (X, a, b, c) and
y = (a, b, c,X ′). According to the birthday paradox, a desired pair can be found in 2∗216 operations
average (instead of 232 if we lock X or X ′ to some constant value).

As soon as we find such a pair x and y, we can compute F1(a, b, c) and apply f−11 to the
ciphertext and decrypt the last round. Then F2 can be found the same way by replacing I and
E with each other due to the symmetry. By doing this round by round, we decrypt the whole
ciphertext and get the desired message (in hexadecimal notation)

acherrypieplease

The reference implementation of this attack requires 222 blocks of text to be encrypted and 10
minutes of time average. It is important to use the server’s ability to process multiple blocks of
text at a time to minimize the amount of HTTP requests.

Four teams successfully solved the problem using the same method.

2.14 Problem “Curl27”

2.14.1 Formulation

Bob is developing the 3OTA infrastructure and has designed a new hash function Curl27 for it. A
distinguishing feature of the infrastructure is the ternary logic: trits from the set T = {0, 1,−1}
are used instead of bits, ternary strings and words are used instead of binary ones. The Curl27
hash function is defined below. Its implementation in Java can be found in [18].

Find a collision for Curl27, that is, different ternary strings X and X ′ such that Curl27(X) =
Curl27(X ′). Submit colliding strings as two lines of trits separated by commas. An example of a
(wrong!) solution is:

-1,1,0,1,1,0

-1,-1,1,0,1,1,-1,0

Description of Curl27. The Curl27 function maps a ternary string X of arbitrary length to a
hash value from T243. When hashing, an auxiliary sponge function Curl27-f : T729 → T729 is used.
The hashing algorithm:

1. Pad X with zeros to make its length a multiple of 243. Divide the resulting string into blocks
X1, X2, . . . , Xd ∈ T243.

2. Prepare the state W = W0W1W2 ∈ T729 consisting of words Wi ∈ T243. Initialize the state
by filling W0 and W2 with zeros and W1 with the encoded initial (before padding) length
of X. The length is encoded by a ternary word according to the little-endian conventions:
less significant trits go first. For example, the length 25 = 1 − 31 + 33 is presented by the
word 11̄01000 . . . 0︸ ︷︷ ︸

243

. Here 1̄ stands for −1.

3. For i = 1, 2, . . . , d, do: W0 ← Xi, W ← Curl27-f(W).

23

4. Return W0.

Description of Curl27-f. In Curl27-f the S-box

S : T3 → T3, (a, b, c) 7→ (F (a, b, c), F (b, c, a), F (c, a, b))

is used. Here

F (a, b, c) = a2b2c+ a2bc2 − ab2c2 + a2b2 − a2bc+ a2c2 + ab2c

− a2c+ ab2 − ac2 + b2c+ bc2 − a2 − b2 + bc− c2 − c+ 1,

where the calculations are carried out modulo 3 while the residue 2 is represented by the trit −1.
To transform the state W , 27 rounds are performed. A round consists of 6 steps. At each

step triplets of trits of W are grouped in a certain way. Then each triplet (a, b, c) is replaced with
S(a, b, c).

Groupings are organized as follows (see the picture below). At the first step, the state is divided
into 3 words of 243 trits. Trits of these words in the same positions are grouped. In the second
step, the state is divided into 9 words of 81 trits. Trits of the 1st, 2nd and 3rd words in the same
positions are grouped, then trits of the 4th, 5th and 6th words, and so on. After that, the state
is divided into words of length 27, then length 9, then length 3 while maintaining the logic of
groupings. In the last sixth step, consecutive triplets of trits are grouped.

Bonus problem (extra scores, a special prize!). Find a collision when the state is initialized
in a different way: now W0,W2 are not filled with zeros, the word 011̄011̄ . . . 011̄︸ ︷︷ ︸

243

is written in each

of them instead.

4

5

6

..
.

Groupings (3 last steps, grouped trits are painted the same color)

2.14.2 Solution

For a word u in the alphabet T, let um be the word of m copies of u. Supposing u = u0u1 . . . un−1
denote u[m] = um0 u

m
1 . . . u

m
n−1. We call a word of the form u[m] m-fragmented.

Theorem. Let m be a power of 3, m ≤ 729. The sponge function Curl27-f preserves m-
fragmentation, that is, if W is m-fragmented, then Curl27-f(W) is also m-fragmented.

Proof. At the ith step of the Curl27-f round function, the state W is divided into words of length
n = 36−i, i = 1, 2, . . . , 6. For n ≤ m the step function preserves equality of trits inside fragments.
It follows from the fact that S(a, a, a) = (b, b, b). For n > m equality is also preserved since in each
fragment trits at the different positions are processed in the same way.

24

Let m be a small power of 3 (interesting cases are m = 3, 9, 27). Consider a ternary string X
of length

1 + 3 + 32 + . . .+ 3m−1 = (3m − 1)/2.

The length is given by a word of m ones. Consequently, the initial state of Curl27 when processing X
is m-fragmented (one fragment of ones, the remaining fragments of zeros).

Let us choose trits of X so as to preserve m-fragmentation of the state during hashing. This
is easy to do using Theorem: each full m-fragment of X must have the form αm, α ∈ T, and, in
addition, trits of the last (incomplete) fragment must be zero to be consistent with the padding
trits. Having achieved m-fragmentation of states, we automatically obtain m-fragmentation of hash
values. Now a hash value is determined by 243/m trits, each of which is repeated m times. We can

find a collision for Curl27 after processing of about
√

3243/m strings X of the described structure,
that is, in time of order

3m ·
√

3243/m = 3m+121.5/m.

The minimum of the function above is achieved at m = 9. During the attack with m = 9 it is
required to process approximately

√
313.5 strings of 9841 = 243 · 40 + 121 trits each.

An example of colliding messages:

X = 0243·39(101100110101111100101100000)[9]0121,

X ′ = 0243·39(000011110100111111001000000)[9]0121.

This collision was found by Jeremy Jean (National Cybersecurity Agency of France), the only
participant who solved the problem.

The preservation of fragmentation is an invariant of Curl27-f which allows to decrease the di-
mension and thereby effectively solve the basic problem. To solve the bonus problem, Jeremy
Jean proposed to use another invariant for Curl27-f: if each part W0, W1, W2 of the state W is
3-expanded, then this fact also holds for Curl27-f(W). Here we call a word U ∈ T243 3-expanded if
it has the form (abc)81, abc ∈ T3.

In the initial state, the parts W0 and W2 are indeed 3-expanded. To comply with the invariant,
the part W1 representing the length of a hashed string X must have one of the forms (ab1)81, (a10)81

or (100)81 (the length is nonzero and positive). As a result, X consists of at least 1+27+. . .+2780 >
3240 trits.

It is easy to maintain the invariant during hashing: full 243-fragments of X must be 3-expanded
and the last incomplete fragment (if it exists) must be filled with zeros. The resulting hash values are
3-expanded, there are only 27 choices for them and a collision will surely be found after processing
only 28 strings X. Of course, the attack is impractical: the time of order 3240, which is required
only for recording colliding messages, is unacceptably large even compared to the time 3243/2 of the
standard birthday attack.

2.15 Problem “8-bit S-box”

2.15.1 Formulation

Permutations S of the set {0, 1}n or Fn2 are usually called n-bit S-boxes. We will focus on the
following cryptographic properties of S-boxes:

1. The (minimal) algebraic degree of S, denoted by deg(S), is the minimum of algebraic
degrees of all component functions of S.

25

2. The nonlinearity of S, denoted by nl(S), is the minimal Hamming distance between all
component functions of S and the set of all affine functions.

3. The differential uniformity of S, denoted by du(S) is the maximal number of solutions of
the equation S(x)⊕ S(x⊕ α) = β for any nonzero vector α and any vector β.

4. The (graph) algebraic immunity of S, denoted by ai(S), is the minimal algebraic degree
of all nonzero Boolean functions f in 2n variables such that f(x, y) = 0 for any x ∈ Fn2 and
y = S(x).

In modern symmetric cryptography, S-boxes of dimension n = 8 are probably the most popular.
For example, such an S-box is used in the AES block cipher. The characteristics of SAES:

(deg, nl,du, ai)(SAES) = (7, 112, 4, 2).

The value ai(SAES) = 2 means that SAES (and the whole AES) can be compactly described by
quadratic equations. This can be a weakness in the context of algebraic attacks.

Imposing the restrictions (deg, ai)(S) = (7, 3) (optimal values), we need to maximize nl(S) and
minimize du(S). The current best result [7, 8] is

(deg, nl,du, ai)(S) = (7, 108, 6, 3).

Problem for a special prize! You need to improve this result: find 8-bit S with nl(S) > 108
and/or du(S) < 6 while preserving deg(S) = 7 and ai(S) = 3.

Remarks. Let us recall relevant definitions.

1. A Boolean function f : Fn2 → F2 can be uniquely represented in the algebraic normal form
(ANF) in the following way: f(x) =

⊕
I∈P(N) aI

(∏
i∈I xi

)
, where P(N) is the power set of

N = {1, . . . , n} and aI ∈ F2.
2. The algebraic degree of F is degree of its ANF: deg(F) = max{|I| : aI 6= 0, I ∈ P(N)}.
3. Boolean functions of the algebraic degree not more than 1 are called affine.
4. The Hamming distance between Boolean functions f and g is the number of vectors x ∈ Fn2

such that f(x) 6= g(x).
5. A function S : Fn2 → Fn2 can be given as S = (s1, . . . , sn), where si is a Boolean function; a

nontrivial linear combination of s1, . . . , sn is a component function of S.

2.15.2 Solution

There were no valuable ideas from the Olympiad participants. The problem remains unsolved for
the considered configuration of cryptographic properties. There exist several dozen of constructions,
based on well-known butterfly structure, that provide current record (7, 108, 6, 3), see [7, 8]. This
leads to the idea that if candidates for improvement exist, then they are likely outside the known
structures and constructions of cryptographic permutations.

2.16 Problem “Conjecture”

2.16.1 Formulation

Let F2 be the finite field with two elements and n be any positive integer larger than or equal
to 3. Let f(X) be an irreducible polynomial of degree n over F2. It is known that the set of the
equivalence classes β of polynomials over F2 modulo f(X) is a finite field of order 2n, that we shall
denote by F2n . It is known that different choices of the irreducible polynomial give automorphic

26

finite fields and such choice has then no incidence on the algebraic problems on the corresponding
fields.

Problem for a special prize! Prove or disprove the following

Conjecture. Let k be co-prime with n. For every β ∈ F2n , let F (β) = β4
k−2k+1. Let ∆ =

{F (β) + F (β + 1) + 1; β ∈ F2n}. For every distinct nonzero v1, v2 in F2n , we have

|{(x, y, z) ∈ ∆3; v1x+ v2y + (v1 + v2)z = 0}| = 22n−3.

Example for n = 3: we can take f(X) = X3 + X + 1, then each element β of the field F23

can be written as a polynomial of degree at most 2: a0 + a1X + a2X
2, with a0, a1, a2 ∈ F2. The

element 0 corresponds to the null polynomial; and the unity, denoted by 1, corresponds to the
constant polynomial 1. We can calculate the table of multiplication in F23 (the table of addition
just corresponds to adding polynomials of degree at most 2); this allows calculating any power of
any element of the field and check the property.

2.16.2 Solution

This mathematical problem is open and difficult. It was presented in [5] for the first time and
discussed in [6]. The conjecture was verified for small n (odd values n 6 11, even values n 6 8).
The Olympiad participants suggested several ideas. Unfortunately, none of them gave significant
advances to prove a conjecture or search for a counterexample. The team of Kristina Geut, Sergey
Titov, and Dmitry Ananichev (Ural State University of Railway Transport) and the team of Alexey
Zelenetskiy, Mikhail Kudinov, and Denis Nabokov (Bauman Moscow State Technical University)
proved the conjecture for a particular case k = 1. Nevertheless, this case is peculiar since the
function is then quadratic and the result is known for quadratic functions. The proofs cannot be
generalized to the common case.

3 Winners of the Olympiad

Here we list information about the winners of NSUCRYPTO’2019 in Tables 9, 10, 11, 12, 13.

Table 9: Winners of the first round in school section A (“School Student”)

Place Name Country, City School Scores

1 Borislav Kirilov Bulgaria, Sofia The First Private Mathematical Gymnasium 16

1 Alexey Lvov Russia, Novosibirsk Gymnasium 6 16

2 Lenart Bucar Slovenia, Ljubljana Gymnasium Bezigrad 15

3 Varvara Lebedinskaya Russia, Novosibirsk The Specialized Educational Scientific Center of
Novosibirsk State University

14

3 Gabriel Ericson Sweden, Örebro Tullangsskolan 14

Diploma Vlad Coneschi Romania, Slatina Radu Greceanu National College 11

Diploma Wang Duanyu Singapore, Singapore New Town Primary School 9

Diploma Vlad Ratnikov Russia, Yaroslavl School 33 of Yaroslavl 9

Diploma Nikita Kukin Russia, Moscow Gymnasium 1540 of Moscow 8

Diploma Michail Kostochka Russia, Novosibirsk Lyceum 130 8

27

Table 10: Winners of the first round, section B (in the category “University Student”)

Place Name Country, City University Scores

1 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 22

1 Mikhail Kudinov Russia, Moscow Bauman Moscow State Technical University 21

2 Narendra Patel India, Roorkee Indian Institute of Technology Roorkee 19

2 Vladimir Schavelev Russia, Saint Petersburg Saint Petersburg State University 19

3 Thanh Nguyen Van Vietnam, Ho Chi Minh City Ho Chi Minh City University of Technology 16

3 Daria Grebenchuk Russia, Yaroslavl Yaroslavl State University 16

3 Roman Gibadulin Russia, Yaroslavl Yaroslavl State University 16

3 Tuong Nguyen Vietnam, Ho Chi Minh City Ho Chi Minh City University of Technology 15

Diploma Denis Nabokov Russia, Moscow Bauman Moscow State Technical University 14

Diploma Filip Dashtevski Macedonia, Kumanovo TU Delft 14

Diploma Sayooj Samuel India, Kollam Amrita University 14

Diploma Paul Cotan Romania, Iaşi Alexandru Ioan Cuza University 13

Diploma Karina Kruglik Belarus, Minsk Belarusian State University 13

Diploma Hosein Hadipour Iran, Tehran University of Tehran 13

Diploma Polina Raspopova Russia, Yekaterinburg Ural State University of Railway Transport 12

Diploma Gorazd Dimitrov Macedonia, Skopje Ecole Polytechnique 12

Diploma Diana Bespechnaya Russia, Moscow Bauman Moscow State Technical University 12

Diploma Nikolay Prudkovskiy Russia, Moscow Bauman Moscow State Technical University 12

Diploma Riccardo Zanotto Italy, Pisa University of Pisa 12

Diploma Dmitry Zakharov Russia, Moscow National Research Nuclear University MEPhI 12

Table 11: Winners of the first round, section B (in the category “Professional”)

Place Name Country, City Organization Scores

1 Henning Seidler Germany, Berlin TU Berlin 26

2 Samuel Tang Hong Kong, Hong Kong Black Bauhinia 20

2 Madalina Bolboceanu Romania, Bucharest Bitdefender 20

3 Irina Slonkina Russia, Moscow National Research Nuclear University MEPhI 16

Diploma Harry Lee Hong Kong, Hong Kong Blocksquare Limited 14

Diploma Alexey Chilikov Russia, Moscow Bauman Moscow State Technical University 14

Diploma Victoria Vlasova Russia, Moscow Bauman Moscow State Technical University 14

Diploma Darko Ninkovic Serbia, Belgrade University of Belgrade 13

Diploma Dheeraj M Pai India, Chennai Hyperweb Media Private Limited 13

Diploma Dmitry Ananichev Russia, Yekaterinburg Ural Federal University 13

Diploma Ekaterina Kulikova Germany, Munich 13

Diploma George Teseleanu Romania, Bucharest Institute of Mathematics of the Romanian
Academy

12

28

Table 12: Winners of the second round (in the category “University student”)

Place Name Country, City University Scores

1 Alexey Zelenetskiy, Mikhail
Kudinov, Denis Nabokov

Russia, Moscow Bauman Moscow State Technical
University

51

2 Ngoc Ky Nguyen, Dung Truong,
Phuoc Nguyen Ho Minh

Vietnam, Ho Chi Minh
City; France, Paris

Ho Chi Minh City University of
Technology, Ecole Normale Superieure

43

2 Thanh Nguyen Van, Quoc Bao
Nguyen, Ngan Nguyen

Vietnam,
Ho Chi Minh City

Ho Chi Minh City University of
Technology

40

3 Maxim Plushkin Russia, Moscow Lomonosov Moscow State University 34

3 Ilya Trusevich, Maxim Bibik,
Alexander Shulga

Belarus, Minsk Belarusian State University 38

Diploma Paul Cotan,
Evgnosia-Alexandra Kelesidis

Romania, Iaşi Alexandru Ioan Cuza University 26

Diploma Roman Sychev, Diana
Bespechnaya, Nikolay Prudkovskiy

Russia, Moscow Bauman Moscow State Technical
University

24

Diploma Vladimir Paprotski, Dmitry
Zarembo, Karina Kruglik

Belarus, Minsk Belarusian State University 21

Diploma Vitaliy Cherkashin, Zoya
Tabikhanova, Evgenia Bykova

Russia, Novosibirsk Novosibirsk State Pedagogical University 18

Table 13: Winners of the second round (in the category “Professional”)

Place Names Country, City Organization Scores

1 Irina Slonkina, Mikhail Sorokin,
Vladimir Bobrov

Russia, Moscow Bauman Moscow State Technical
University

48

1 Kristina Geut, Sergey Titov,
Dmitry Ananichev

Russia,
Yekaterinburg

Ural State University of Railway
Transport, Ural Federal University

46

2 Henning Seidler, Katja Stumpp Germany, Berlin Berlin Technical University 42

3 Victoria Vlasova, Mikhail
Polyakov, Alexey Chilikov

Russia, Moscow Bauman Moscow State Technical
University

37

3 Duc Tri Nguyen, Quan Doan,
Tuong Nguyen

Vietnam,
Ho Chi Minh City

Cryptographic Engineering Research Group,
pwnphofun, Ho Chi Minh City University of
Technology

36

3 Madalina Bolboceanu,
Andrei Mogage, Radu Titiu

Romania,
Bucharest

Bitdefender, Alexandru Ioan Cuza
University

34

Diploma Elena Kirshanova, Semyon
Novoselov, Nikita Kolesnikov

Russia, Kaliningrad Immanuel Kant Baltic Federal University 28

Diploma Vyacheslav Salmanov, Evgeniya
Ishchukova, Nikita Kutovoy

Russia, Taganrog Southern Federal University 22

Diploma Jeremy Jean France, Paris National Cybersecurity Agency of France 20

Diploma Khai Hanh Tang, Pham Phuong,
Yi Tu

Singapore,
Singapore

Nanyang Technological University 21

Diploma Harry Lee, Samuel Tang Hong Kong,
Hong Kong

Black Bauhinia 20

Diploma Danh Nam Tran, Thu Hien Chu
Thi, Phu Nghia Nguyen

Vietnam,
Ho Chi Minh City

Ho Chi Minh City Pedagogical University,
Japan Advanced Institute of Science and
Technology, Ho Chi Minh City University of
Technology

20

29

References

[1] Agievich S., Gorodilova A., Idrisova V., Kolomeec N., Shushuev G., Tokareva N. Mathematical
problems of the second international student’s Olympiad in cryptography. Cryptologia. 2017,
V. 41, No. 6, pp. 534–565.

[2] Agievich S., Gorodilova A., Kolomeec N., Nikova S., Preneel B., Rijmen V., Shushuev G.,
Tokareva N., Vitkup V. Problems, solutions and experience of the first international student’s
Olympiad in cryptography. Prikladnaya Diskretnaya Matematika (Applied Discrete Mathemat-
ics). 2015, No. 3, pp. 41–62.

[3] Brinkmann M., Leander G. On the classification of APN functions up to dimension five. Designs,
codes and cryptography. 2008, V. 49, pp. 273–288.

[4] De Canni‘ere C. “Analysis and Design of Symmetric Encrytption Algorithms,” Ph.D. thesis,
2007.

[5] Carlet C. Componentwise APNness, Walsh uniformity of APN functions, and cyclic-additive
difference sets. Finite Fields and Their Applications. 2018, V. 53, pp. 226–253.

[6] Carlet C. On APN exponents, characterizations of differentially uniform functions by the Walsh
transform, and related cyclic-difference-set-like structures. Proceedings of WCC 2017. Designs,
Codes and Cryptography (Postproceedings of WCC 2017). V. 87 (2), pp. 203–224, 2018.

[7] de la Cruz Jimènez R. A. Generation of 8-Bit S-Boxes Having Almost Optimal Cryptographic
Properties Using Smaller 4-Bit S-Boxes and Finite Field Multiplication. In: Lange T., Dunkel-
man O. (eds) Progress in Cryptology – LATINCRYPT 2017. LNCS, 2019, V. 11368, pp. 191–206.

[8] Fomin D. B. New classes of 8-bit permutations based on a butterfly structure. Math. vopr.
kript. 2019, V. 10(2), pp. 169–180. https://ctcrypt.ru/files/files/2018/09_Fomin.pdf.

[9] Geut K., Kirienko K., Sadkov P., Taskin R., Titov S. On explicit constructions for solving the
problem “A secret sharing”. Prikladnaya Diskretnaya Matematika. Prilozhenie. 2017, No. 10,
pp. 68–70 (in Russian).

[10] Gorodilova A., Agievich S., Carlet C., Gorkunov E., Idrisova V., Kolomeec N., Kutsenko A.,
Nikova S., Oblaukhov A., Picek S., Preneel B., Rijmen V., Tokareva N. Problems and solutions
of the Fourth International Students Olympiad in Cryptography (NSUCRYPTO). Cryptologia.
2019, V. 43, I. 2, pp. 138–174.

[11] Gorodilova A., Agievich S., Carlet C., Hou X., Idrisova V., Kolomeec N., Kutsenko A., Mar-
iot L., Oblaukhov A., Picek S., Preneel B., Rosie R., Tokareva N. The Fifth International
Students’ Olympiad in Cryptography - NSUCRYPTO: problems and their solutions. Cryptolo-
gia. 2020, V. 44, I. 3, pp. 223–256.

[12] Lewand R. E. Cryptological Mathematics, MAA, Washington, 2000.

[13] Schneier B. Applied Cryptography: Protocols, Algorithms and Source Code in C. Wiley; 2nd
edition, 1996.

[14] Tokareva N., Gorodilova A., Agievich S., Idrisova V., Kolomeec N., Kutsenko A.,
Oblaukhov A., Shushuev G. Mathematical methods in solutions of the problems from the Third
International Students’ Olympiad in Cryptography. Prikladnaya Diskretnaya Matematika (Ap-
plied Discrete Mathematics). 2018, No. 40, pp. 34–58.

30

https://ctcrypt.ru/files/files/2018/09_Fomin.pdf

[15] https://nsucrypto.nsu.ru/

[16] https://nsucrypto.nsu.ru/unsolved-problems/

[17] https://nsucrypto.nsu.ru/archive/2019/round/2/task/4/

[18] https://nsucrypto.nsu.ru/media/Olympiads/2019/Round_2/Tasks/curl27.java

[19] Find Words Using Pattern Matching, in Litscape.com. Available at http://www.litscape.

com/word_tools/pattern_match.php.

[20] Letter Frequency, in Wikipedia. Available at https://en.wikipedia.org/wiki/Letter_

frequency.

[21] https://www.ibm.com/blogs/research/2018/01/quantum-prizes/

31

https://nsucrypto.nsu.ru/
https://nsucrypto.nsu.ru/unsolved-problems/
https://nsucrypto.nsu.ru/archive/2019/round/2/task/4/
https://nsucrypto.nsu.ru/media/Olympiads/2019/Round_2/Tasks/curl27.java
http://www.litscape.com/word_tools/pattern_match.php
http://www.litscape.com/word_tools/pattern_match.php
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
https://www.ibm.com/blogs/research/2018/01/quantum-prizes/

	Problem structure of the Olympiad
	Problems and their solutions
	Problem ``A 1024-bit key''
	Formulation
	Solution

	Problem ``The magnetic storm''
	Formulation
	Solution

	Problem ``Autumn leaves''
	Formulation
	Solution

	Problem ``A rotor machine''
	Formulation
	Solution

	Problem ``Broken Calculator''
	Formulation
	Solution

	Problem ``Calculator''
	Formulation
	Solution

	Problem ``A promise''
	Formulation
	Solution

	Problem ``A promise and money''
	Formulation
	Solution

	Problem ``16QAM''
	Formulation
	Solution

	Problem ``APN + Involutions''
	Formulation
	Solution

	Problem ``Sharing''
	Formulation
	Solution

	Problem ``Factoring in 2019''
	Formulation
	Solution

	Problem ``TwinPeaks3'' (online)
	Formulation
	Solution

	Problem ``Curl27''
	Formulation
	Solution

	Problem ``8-bit S-box''
	Formulation
	Solution

	Problem ``Conjecture''
	Formulation
	Solution

	Winners of the Olympiad

