International Students' Olympiad in Cryptography -2017October 23-30 Second round **NSUCRYPTO**

Problem 1. «The image set»

Special Prize from the Program Committee!

Let \mathbb{F}_2 be the finite field with two elements and n be any positive integer. Let g(X)be an irreducible polynomial of degree n over \mathbb{F}_2 . It is widely known that the set of equivalence classes of polynomials over \mathbb{F}_2 modulo q(X) is a finite field of order 2^n ; we denote it by \mathbb{F}_{2^n} .

Characterize in a non-straightforward way the image set (depending on n) of the function F over \mathbb{F}_2^n defined as follows:

$$F(x) = x^3 + x.$$

That is, characterize in a way which brings additional information, for instance on its algebraic structure.

An example. For n = 3 we can take $g(X) = X^3 + X + 1$, then each element of the field \mathbb{F}_{2^3} can be written as a polynomial of degree at most 2: $a_0 + a_1 X + a_2 X^2$, with $a_0, a_1, a_2 \in \mathbb{F}_2$. We can calculate the table of multiplication in \mathbb{F}_{2^3} modulo g(X), while the table of addition just corresponds to adding polynomials over \mathbb{F}_2 . For example,

$$(1 + X + X^2) + (X + X^2) = 1,$$
$$(X + X^2)(1 + X^2) = X + X^2 + X^3 + X^4 = 1 + X \pmod{g(X)}$$

Now we can calculate all the elements of the image set of F(x). Indeed,

$$\{F(x) \mid x \in \mathbb{F}_{2^3}\} = \{0, 1, 1+X, 1+X^2, 1+X+X^2\}.$$

Then we note that it is the union of $\{0\}$ and of the affine plane $1 + \{0, X, X^2, X + X^2\}$. In our case it is a desirable algebraic structure of this set.

You need to study this problem for an arbitrary n (or some partial cases).

Remark. Functions over the finite field of order 2^n are of great interest for using in cryptographic applications, for example, as S-boxes. For instance, AES S-box is based on the inverse function over \mathbb{F}_{2^8} . But in fact, there are many open problems in fields of finding new constructions and descriptions of cryptographically significant functions!

