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ABSTRACT
Mathematical problems and their solutions from the fourth
International Students’ Olympiad in cryptography
(NSUCRYPTO-2017) are presented. We consider problems
related to attacks on ciphers and hash functions, crypto-
graphic Boolean functions, linear branch numbers, addition
chains, and error correction codes, among others. We discuss
several open problems involving the algebraic structures of
cryptographic functions, useful proof-of-work algorithms, the
Boolean hidden shift problem, and quantum computing.
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Introduction

The International Students’ Olympiad in Cryptography (NSUCRYPTO)
was held for the fourth time in 2017. The idea of the Olympiad was born
at Novosibirsk State University, which is located in the world-famous scien-
tific heart of Siberia—Akademgorodok. Now, the Olympiad Program
Committee includes specialists from Belgium, France, the Netherlands, the
United States of America, Norway, India, Belarus, and Russia. At the same
time, the geography of participants is expanding year by year: there were
more than 1,300 participants from 38 countries during 2014–2017.
Let us shortly formulate the format of the Olympiad (all information can

be found on the official website, nsucrypto.nsu.ru). One of the Olympiad’s
ideas is that everyone can participate: school students, university students,
and even professionals! Each participant chooses his/her category when
registering on the Olympiad website. The Olympiad consists of two inde-
pendent internet rounds; the first one is individual while the second round
is team-oriented. The first round is divided into two sections, “A” for
school students and “B” for university students and professionals.
Participants read the Olympiad problems and send their solutions using
the Olympiad website. The language of the Olympiad is English.
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Every year participants are offered the chance to solve several problems
of differing complexity at the intersection of mathematics and cryptog-
raphy. Another feature of the Olympiad is that it not only includes interest-
ing tasks with known solutions but also offers unsolved problems in this
area. All the open problems stated during the Olympiad’s history can be
found at nsucrypto.nsu.ru/unsolved-problems. On the website we also mark
the current status of each problem. For example, the problem “Algebraic
immunity” (2016) was completely solved during the Olympiad and a partial
solution for the problem “A secret sharing” (2014) was proposed in Geut
et al. 2017. We invite everybody who has ideas on how to solve the prob-
lems to send your solutions to us!
What was surprising and very pleasant for us this year was that the

NSUCRYPTO Olympiad can even change people’s professional lives! The fol-
lowing are some examples of the feedback we have received over the years:

“Without having a 3rd ranking to go for PhD, I would give up in cryptography due to
the complex mathematics involve.”—Duc Tri Nguyen (Vietnam, third place in 2016
and 2017)

“When we joined the competition, we just wanted to know where we were with our
knowledge, wanted to test ourselves with our self-study Crypto, and wanted to improve
our math in Cryptography.”—Quan Doan (Vietnam, third place in 2016 and 2017)

“The problems contain much knowledge not only from mathematics and cryptography,
but also from many other fields such as art.”—Renzhang Liu (China, first place
in 2015)

“I sometimes find myself reading too much and this competition is a great way of
putting knowledge into practice by solving fun tasks.”—Dragos Alin Rotaru (United
Kingdom, third place in 2016)

“It’s a contest that leaves you wanting to spend more time on it after the deadline, just
to work out the questions you didn’t get.”—Robert Spencer (United Kingdom, first
place in 2016, second place in 2017)

“Participation in the Olympiad offers you an excellent opportunity to try yourself as a
codebreaker and a cryptographer.”—Anna Taranenko (Russia, first place in 2014,
second place in 2015 and 2016, and honorable diploma in 2017)

“Sometimes you spend hours trying to solve a problem, sometimes it seems that it's
impossible to solve it. But when you find a solution, usually so obvious, you experience
an incomparable sense of delight. My hat's off to the person who thinks up such
interesting tasks!”—Evgeniya Ishchukova (Russia, third place in 2016, honorable
diplomas in 2015 and 2017).

A complete list of comments can be found at nsucrypto.nsu.ru/feedbacks.
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The paper is organized as follows. We start with the structure of problems
structure at the Olympiad. Then we present formulations of all the problems
stated during the Olympiad and give their detailed solutions. Finally, we pub-
lish the list of NSUCRYPTO-2017 winners.
Mathematical problems from the previous International Olympiads

(NSUCRYPTO-2014, NSUCRYPTO-2015, and NSUCRYPTO-2016) can be
found in Agievich et al. 2015, 2017 and Tokareva et al. 2018, respectively.

Problem structure of the Olympiad

There were 16 problems stated during the Olympiad, and some of them
were included in both rounds (Tables 1 and 2). The school section of the
first round consisted of six problems, whereas the student section contained
seven problems. Two problems were common to both sections. The second
round was composed of eleven problems; they were common for all the
participants. Three problems from the second round were marked as
“unsolved” (if someone proposed a complete solution to this problem, he/
she would be awarded special prizes from the Program Committee).

Problems and their solutions

In this section we formulate all the problems from NSUCRYPTO-2017 and
present their detailed solutions while paying attention to solutions pro-
posed by the participants.

Problem: “PIN code”

Formulation
A PIN code P ¼ p1p2 . . . pn is an arbitrary number consisting of a finite
number of pairwise different decimal digits in ascending order

Table 1. Problems from the first round.
A: School Section

N Problem Title Maximum Score

1 PIN code 4
2 Chests with treasure 4
3 A numerical rebus 4
4 Timing attack 4
5 The shortest addition chain 4
6 A music lover 4

B: Student Section

N Problem Title Maximum Score

1 Timing attack 4
2 Treasure chests 4
3 A music lover 4
4 An infinite set of collisions 4
5 One more parameter 10
6 Scientists 8
7 Masking 10
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(p1< p2< . . . < pn). Bob got his personal PIN code from the bank, but he
decided that the code is not secure enough and changed it in the follow-
ing way:

1. Bob multiplied his PIN code P by 999 and obtained the num-
ber A ¼ a1a2:::am ;

2. Then he found the sum of all digits of A: a1 þ a2 þ
:::þ am ¼ S ¼ s1s2:::sk ;

3. Finally, he took all digits (starting from zero) smaller than s1, sorted
them in ascending order, and then inserted them between digits s1 and
s2 in the number S. The resulting number P0 is Bob’s new PIN code.
For example, if S was 345 then after insertion we obtain P0 ¼ 301245.

Find the new code P0!

Remarks. By p1p2 . . . pn we mean that p1; p2; . . . ; pn are decimal digits and
all digits over the bar form a decimal number.

Solution
Let P ¼ p1p2 . . . pn for some positive integer n. Let us note that P multi-
plied by 999 is the same thing as P multiplied by 1,000 minus P; that is,
shifting the number P three positions to the left minus itself. Let us con-
sider this subtraction:

p1 p2 p3 p4 � � � pn 0 0 0
� p1 � � � pn�3 pn�2 pn�1 pn

Since p1< p2< . . . < pn by definition, we have pn�3< pn. Therefore, we
borrow a unit only from pn among p1; . . . ; pn. Thus, the sum of digits of
this difference is equal to

10�pnð Þ þ 9�pn�1ð Þ þ 9�pn�2ð Þ þ pn�1�pn�3ð Þ
þ pn�1�pn�4ð Þ þ :::þ p4�p1ð Þ þ p3 þ p2 þ p1 ¼ 27:

So, Bob’s new PIN code is 2017.

Table 2. Problems from the second round.
N Problem Title Maximum Score

1 The image set Unsolved
2 TwinPeaks 8
3 An addition chain 8
4 Hash function FNV2 8
5 A music lover 4
6 Boolean hidden shift and quantum computings Unsolved
7 One more parameter 10
8 Scientists 8
9 Masking 10
10 PIN code 4
11 Useful proof-of-work for blockchains Unsolved
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Many great and compact solutions were sent by the participants. The
best solution in the school section was by Lenart Bucar (Gimnazija
Be�zigrad, Grosuplje, Slovenia). Also, we want to note a detailed solution
sent by Ivan Baksheev (Gymnasium 6, Novosibirsk, Russia).

Problem: “Chests with treasure”

Formulation
We have three closed chests. Some of them contain treasure (diamonds,
gold coins, and bitcoins), but we do not know which ones. A parrot knows
which chests contain treasure and which do not; he agrees to answer ques-
tions with “yes” or “no.” He may possibly lie in his answers, but not more
than once. List six questions such that it is possible to deduce from the
parrot’s answers which chests contain treasure and which do not.

Solution
Let us mark the chest with zero if it does not contain the treasure and with
one if it does. Similarly, let us write down the parrot’s answers to our ques-
tions as ones for “yes” and zeros for “no.” Now the state of the chests is
encoded with three bits of information, and the parrot’s answers give us six
bits of information. Taking into account that the parrot may or may not lie
in one of his answers, one or none of the bits among these six can
be faulty.
So, our goal is to devise six questions in such a way that six bits of

obtained information can be uniquely decoded to exactly one three-bit state
of chests, even if one bit of answers is not right. In terms of coding theory,
we need to construct an error-correcting code that corrects one error. In
simple terms, we need to map every one of 23 ¼ 8 chest states to a Boolean
vector of length six in such a way that even if one bit in any of these image
vectors gets flipped, we can uniquely determine which vector it was before
the error occurred.
To find these eight vectors it is sufficient to find eight vectors of length

six such that every two of them are different in at least three bits. Even if
we receive one of these vectors with a flipped bit, it is still possible to
determine which of these eight vectors it was before the error. These eight
vectors can be found manually. One example is shown below:

000ð Þ ! 000000ð Þ 010ð Þ ! 110011ð Þ 011ð Þ ! 100101ð Þ 110ð Þ ! 010110ð Þ
001ð Þ ! 001111ð Þ 100ð Þ ! 111100ð Þ 101ð Þ ! 011001ð Þ 111ð Þ ! 101010ð Þ

So, if we are able to make a list of six questions that for every three-bit
state of the chests gives us a corresponding six-bit answer vector, we will
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be able to reconstruct the correct answer vector even if the parrot lies
when answering one of the questions.
The questions can easily be constructed by using logical operations. Let

us take a look at the first bit of all answer vectors. It is equal to one only
in the third, fourth, fifth, and eighth vectors, which correspond to chest
states ð010Þ; ð100Þ; ð011Þ; ð111Þ. So we can formulate the first question
as follows:

“Is it true that there are treasures only in the second chest or only in the first chest
or only in the second and third chests or in all chests?”

The truthful answers to these questions will give us the correct first bit
of an answer vector. By constructing the other five questions similarly we
can create a mapping as described above and will be able to decode six
answers into a three-bit chest state even if one answer is not honest.
Originally, it was intended that the list of six questions should be pre-

sented before asking any of them. So, all questions are predetermined and
do not depend on answers to other questions. But since this was not expli-
citly stated in the description of the problem, this condition was not
required. Correct and full solutions to the problem were given by seven
participants, most of them not using such a coding-theory approach and
presenting interesting questioning strategies for the problem. The best solu-
tions were presented by Alexander Grebennikov (Presidential PML 239, St.
Petersburg, Russia) and by Ivan Baksheev (Gymnasium 6,
Novosibirsk, Russia).

Problem: “Treasure chests”

Formulation
We have seven closed chests. Some of them contain treasure (diamonds,
gold coins, and bitcoins), but we do not know which ones. A parrot knows
which chests contain treasure and which do not; he agrees to answer ques-
tions with “yes” or “no.” He may possibly lie in his answers but not more
than twice. List fifteen questions such that it is possible to deduce from the
parrot’s answers which chests contain treasure and which do not.

Solution
See solution to the problem “Chests with treasure” for the idea of the solu-
tion. In this problem we need to find a code that maps all binary vectors
of length seven (chest states) to binary vectors of length fifteen and can
correct up to two errors. If such a code is found, then we can easily con-
struct questions using the technique described in the solution for the
“Chests with treasure” problem.
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It is sufficient to find a [15; 7; 5]-code, where “5” is the minimal distance
of the code (since a code with the minimal distance five or greater can cor-
rect two errors). It is known that there exist Bose-Chaudhuri-
Hocquenghem (BCH) codes with these exact parameters (for example, see
MacWilliams and Sloane 1977). Using one of those codes we can construct
fifteen questions for the parrot that will allow us to decode chest states
from answers.
Full and correct solutions for the problem were proposed by twelve uni-

versity students and professionals. All of them used error-correction codes.

Problem: “A numerical rebus”

Formulation
Buratino keeps his golden key in a safe that is locked with a numerical
password. For secure storage of the password he replaced some digits in
the password with letters (in such a way that different letters substitute dif-
ferent digits). After replacement Buratino got the password
NSUCRYPTO17. Alice the Fox found out that

� the number NSUCRYPTO is divisible by all integers n, where
n< 17, and

� the remainder of NSU 2 CRY is divisible by 7.

Can she find the password?

Remarks. Here we denote ABC . . . (see remarks to the problem “PIN
code”) by ABC. . ..

Solution
The main idea of the solution is to apply necessary divisibility rules that
would allow us to reduce the exhaustive search for the original password.
Let us describe the main steps of the solution.

1. Since the number NSUCRYPTO is divisible by all integers1; 2; :::; 16, it
is divisible by 720720. Thus, O is equal to 0.

2. Since NSU – CRY is divisible by 7, PTO is also divisible by 7.
3. Since NSUCRYPTO is divisible by 8, PTO is divisible by 8. Thus, we

have that PTO is equal to 280, 560, or 840.
4. Since O is equal to 0 and NSUCRYPTO is divisible by 9, there is no

digit 9 in this number.
5. Then we check all the possible variants while keeping in mind divisibil-

ity rules for 11 and 13. Finally, we find the unique number that is
376215840. So, the password is 37621584017.
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The best solution was proposed by Andrei Razvan (“Fratii Buzesti”
National College, Craiova, Romania). He implemented steps 1–3 and
searched through the remaining possible numbers using a computer. While
many proposed solutions used exhaustive searches, many students tried to
find this number theoretically and got partial results.

Problem: “Timing attack”

Formulation
Anton invented a cipher machine that can automatically encrypt messages
consisting of English letters. Each letter corresponds to a number from 1 to
26 by alphabetical order (1 is for A, 2 is for B, … , 26 is for Z). The
machine encrypts messages letter by letter. It encrypts one letter as follows:

1. If the letter belongs to the special secret set of letters, the machine does
not encrypt it, adds the original letter to the ciphertext, and does not go
to step 2; otherwise it goes to step 2.

2. According to the secret rule, it replaces the current letter with number
k by a letter with number ‘, where ‘ has the same remainder of division
by 7, and adds this new letter to the ciphertext.

Anton’s classmate Evgeny is interested in different kinds of cryptanalysis
that use some physical information about the encryption process. He measured
the amount of time that is required for each letter encryption by Anton’s
cipher machine and found out that a timing attack can be applied to it!
He captured the ciphertext that Anton sent to his friend and was able to

read the message using the information from his measurements. Could you
also decrypt the ciphertext

Tois kevy is fhye tvvu xust hgvtoed iyife ngfbey!
Wvat ka rvn knvw owvnt it?

if you know how much time encryption of each message letter took
(Figure 1)?

Solution
First, one can notice that according to the diagram (Figure 1) an encryp-
tion of each letter took one or two seconds. This leads to an idea that the
encryption process takes one second for letters from the secret group (only
step 1 is needed) and takes two seconds otherwise (two steps of encryp-
tion). Thus, one can easily find letters that belong the secret group and
partially read the message:

T_is _e__ is ___e t___ __st ___t_e_ __i_e ____e_!

W__t __ ___ k__w ____t it?
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To read the whole message we just need to write all possible replace-
ments for each of the empty positions according to the step 2 rule to
find the appropriate English words. Note that the second sentence
“What do you know about it?” can be correctly guessed at the first
glance! And many participants mentioned this observation. Let us read
the first sentence:
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Thus, the message is “This year is more than just another prime number!
What do you know about it?” Really, the number 2017 has magnificent
properties (see Wei 2018). Almost all participants solved the problem and
found the correct answer. The best ones were given by school students
Borislav Kirilov (FPMG, Sofia, Bulgaria) and Vladimir Schavelev (SESC
NSU, Novosibirsk, Russia) and by university students Igor Antonov (Ural
State University of Railway Transport) and Kristina Zhuchenko (Demidov
Yaroslavl State University).

Problem: “A music lover”

Formulation
As usual Alex listens to music on the way to university. He chooses it by
applying one secret code to the second one in his mind (Figure 2). Could
you understand what music he is listening to right now?

Figure 1. Time consumption of the message encryption.
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Remarks.
1. You should invent a way to apply one code to another.
2. Some arithmetic operations also can be used.

Solution
Let us look at Figure 2. The first natural step in solving the problem is to
decode the Morse Code at the top of the picture: STNEKMIHWAY. The
decoded string consists of 11 letters as well as the string AWQBSTCODEA
under the table. It brings to the mind that we should somehow apply one
string to another using the information from the table. Note that almost
every letter in the table has an arrow pointing to a sequence of numbers,
and among the letters having arrows there are all the letters of the decoded
string STNEKMIHWAY:

Let us sum the numbers for each letter above. That is, we need to calcu-
late 3þ 1 þ 0, 1þ 6, and so on. Thus, we get the string of eleven integers,
4; 7; 5; 25; 25; 10; 4; 3; 5; 0; 6. Finally, we can apply this string to the
AWQBSTCODEA in the following way: each letter is cyclically shifted right
in the alphabet by the corresponding number of positions from the integer
string. We get

Figure 2. Illustration for the problem “A music lover.”

S ! 3 1 0 T ! 1 6 N ! 2 3 E ! 8 9 8 K ! 9 9 7 M ! 2 2 6
I ! 2 1 1 H ! 3 W ! 5 A ! 0 Y ! 3 3

letter A W Q B S T C O D E A
shift 4 7 5 25 25 10 4 3 5 0 6
result E D V A R D G R I E G
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Thus, we conclude that Alex listens to the music of the great Norwegian
composer Edvard Grieg.
The problem appeared to be difficult for the first round: it was com-

pletely solved by only three participants. Nevertheless, twelve teams solved
the problem during the second round.

Problem: “The shortest addition chain”

Formulation
In many cryptographic systems we need to calculate the value B ¼
Ac mod p; where A is an integer, 16A6p�1, c is an arbitrary positive inte-
ger, and p is a large prime number. One possible way of reducing the com-
putational load of calculation is to minimize the total number of
multiplications required to compute the exponentiation. Since the exponent
in the equation is additive, the problem of computing powers of the base
element A can also be formulated as an addition calculation for which add-
ition chains are used.
An addition chain for an integer n is a sequence of positive integers

a0 ¼ 1; a1; . . . ; ar�1; ar ¼ n; where r is a positive integer (called the length
of the addition chain), and the following relation holds for all i,
16i6r: ai ¼ aj þ ak for some k; j such that k6j< i:
Find an addition chain of length as small as possible for the value 81,

present it as a list of values, and mathematically prove that it cannot
be shorter!
An example: For the value 15 the shortest additional chain has length 5

and its list of values is 1; 2; 3; 6; 12; 15: So, to optimally calculate
B ¼ A15 mod p; one can use just five multiplications: A2 ¼ A � A mod p;
A3 ¼ A2 � A mod p; A6 ¼ A3 � A3 mod p; A12 ¼ A6 � A6 mod p;
and A15 ¼ A12 � A3 mod p.

Solution
It is easy to construct an addition chain of length 8 for value 81. For
example,

1; 2; 4; 8; 16; 32; 64; 80; 81:

There are different ways of proving that a chain of length 7 or shorter
does not exist. One way is to write a computer program that will construct
all possible addition chains of length 1; . . . ; 7 and show that none of them
contain 81. We will provide a theoretical proof.
Let us have an addition chain 1 ¼ a0; a1; a2; . . . ; ar of length r. A trivial

observation is that ak cannot be greater than 2k for any k. Thus, an add-
ition chain of length 6 or shorter cannot exist for the number 81 because
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81> 64 ¼ 26. So, we have to prove that an addition chain of length 7 is
not possible either. In order to do that, we prove the following lemma:

Lemma. Let 1 ¼ a0; a1; a2; . . . ; ar be an addition chain of length r. Assume
that 2r�1< ar62r. Then, ar ¼ 2r�1 þ 2s for some 06s6r�1.
Proof. Let us prove the lemma by induction on r. For r¼ 1, there is only
one addition chain (1, 2) that satisfies the condition of the lemma. Assume
that for all addition chains a0; a1; a2; . . . ; at of length t< r, such that
2t�1< at62t , it holds at ¼ 2t�1 þ 2s, where 06s6t�1.
Let 1 ¼ a0; a1; . . . ; atþ1 be an addition chain of length tþ 1 such that

2t < atþ162tþ1. By definition of an addition chain, atþ1 ¼ an þ am for some
indices n;m6t. If both an, am are not greater than 2t�1, then
atþ162t�1 þ 2t�1 ¼ 2t; that is a contradiction.
Therefore, without loss of generality, an> 2t�1. But that also means

n> t�1. So, n¼ t and the chain a0; a1; . . . ; at satisfy the induction hypoth-
esis. Therefore, an ¼ at ¼ 2t�1 þ 2s for some s6t�1. Substituting an into
the expression for atþ1, we obtain

atþ1 ¼ 2t�1 þ 2s þ am

for some m6t and s6t�1. Now consider several cases:

� s ¼ t�1. In this case, an ¼ at ¼ 2t, which forces all ai to be equal to 2i.
So, atþ1 ¼ 2t þ 2m and the induction step is proven.

� m ¼ t. In this case, atþ1 ¼ 2at ¼ 2t þ 2sþ1 and the induction step
is proven.

� s< t�1;m ¼ t�1; am62t�2. In this case, atþ1 ¼ 2t�1 þ 2s þ am62t�1þ
2t�2 þ 2t�2 ¼ 2t; that is a contradiction.

� s< t�1;m ¼ t�1; am> 2t�2. Then, a0; a1; . . . ; at�1 satisfies the induction
hypothesis and am ¼ 2t�2 þ 2q; q6t�2. Thus, atþ1 ¼ 2t�1þ 2s þ2t�2 þ2q.
� If q ¼ t�2, then atþ1 ¼ 2t þ 2s and the induction step is proven.
� If s ¼ t�2, then atþ1 ¼ 2t þ 2q and the induction step is proven.
� If q< t�2 and s< t�2, then atþ162t, which is a contradiction.

� s< t�1;m< t�1. Then am62t�2 and atþ162t�1 þ 2t�2 þ 2t�2 ¼ 2t,
which is a contradiction.

We considered all cases and checked that some of them contradict the
lemma assumption while others lead to the proven induction step. Thus
the lemma holds.

Now assume that there is an addition chain of length 7 for 81. Because
81> 64 ¼ 26 such a chain would satisfy the condition of the lemma. Then,
81 ¼ a7 ¼ 64þ 2s for some s66. This is impossible. So, the shortest add-
ition chain for 81 has length 8.
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This is a rather general solution that also provides an interesting fact
about addition chains. Just four school students completely solved the
problem; the best solution was provided by Alexander Dorokhin
(Presidential PML 239, St. Petersburg, Russia). Usually, proofs of impossi-
bility of a chain of length 7 were given in a more straightforward manner,
which involved checking possible strategies of getting to number 81 in 7
steps and showing that no matter how we add numbers, we will not be
able to get 81.

Problem: “An infinite set of collisions”

Formulation
Bob is very interested in blockchain technology, so he decided to create his
own system. He started with the construction of a hash function. His first
idea for a hash function was the function H with a hash value of length 16.
It works as follows.

� Let u1; u2; . . . ; un 2 F2 be a data representation; n is arbitrary.
� Bob calculates z0; . . . ; zn 2 F

32
2 , z0 ¼ ð0; . . . ; 0Þ, and ziþ1 is obtained

from zi in the following way:

z0 ¼ ðzi1; zi2; . . . ; zi16; zi1� zi17; z
i
2� zi18 . . . ; z

i
16� zi32Þ if ui ¼ 1;

ðzi1� zi17; z
i
2� zi18; . . . ; z

i
16� zi32; z

i
17; z

i
18; . . . ; z

i
32Þ if ui ¼ 0;

(

z00 ¼ z0 if ui 6¼ z032;
ðz01 � 1; z02� 1; . . . ; z032� 1Þ if ui ¼ z032;

�
ziþ1 ¼ ðz002; z003; . . . ; z0032; uiÞ:

� Finally, Hðu1; . . . ; unÞ ¼ ðzn1 � zn17; z
n
2 � zn18; . . . ; z

n
16� zn32Þ.

But then Bob found out that his hash function is weak for use in crypto-
graphic applications. Prove that Bob was right by constructing an infinite
set C � [1n¼1Fn

2 such that all elements of C have the same hash value H.
An example: Let us calculate Hð0; 1; 0Þ. We have

z1 ¼ ð1; 1; :::; 1|fflfflfflfflffl{zfflfflfflfflffl}
31

; 0Þ; z2 ¼ ð0; :::; 0|fflfflffl{zfflfflffl}
15

; 1; :::; 1|fflfflffl{zfflfflffl}
15

; 0; 1Þ;

z3 ¼ ð1; :::; 1|fflfflffl{zfflfflffl}
13

; 0; 0; 1; :::; 1|fflfflffl{zfflfflffl}
14

; 0; 1; 0Þ:

Thus, Hð0; 1; 0Þ ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
14

; 1; 1Þ:

150 A. GORODILOVA ET AL.



Solution
Here we provide the solution proposed by Alexey Udovenko (University of
Luxembourg). It consists of a theoretical proof and a simple example.
Exactly the same idea was suggested by the program committee.
A theoretical proof: Let us consider an arbitrary infinite sequence u ¼

u1; u2; u3; . . . and the following hash values:

Hðu1Þ;Hðu1; u2Þ;Hðu1; u2; u3Þ; :::.
To obtain an infinite set of collisions, it is enough to find some ‘;m such
that z‘ ¼ zm. Then we reconstruct the sequence in the following way: uk ¼
uk�jm�‘j starting with k ¼ maxf‘;mg þ 1. By this method we obtain a cycle
in the sequence of the states z1; z2; z3; . . ., since each state zi uniquely
defines Hðu1; . . . ; uiÞ and the next state ziþ1 in conjunction with uiþ1. The
cycle length divides 232! because it is between 1 and jF32

2 j ¼ 232. The initial
state z0 may not belong to the cycle, but after 232 steps z2

32
definitely

belongs to the cycle. It means that

Hðu1; :::; u232Þ ¼ Hðu1; :::; u232þ1�232!Þ ¼ Hðu1; :::; u232þ2�232!Þ ¼ :::

An example: Let us consider the zero sequence u ¼ 0; 0; 0; . . .. In this
case,

z31 ¼ 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0ð Þ

and z32 ¼ z31. Thus, Hðu1; . . . ; ukÞ ¼ ð1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0Þ
for any k> 31.
The problem was completely solved by twelve university students and

professionals.

Problem: “One more parameter”

Formulation
There are several parameters of block ciphers in cryptanalysis that are used
to measure diffusion strength. In this problem we study properties of one
of them.
Let n, m be positive integers. Let a ¼ ða1; . . . ; amÞ be a vector with coor-

dinates ai taken from the finite field F2. Denote the number of nonzero
coordinates ai, i ¼ 1; . . . ;m by wtðaÞ and call this number the weight of
the vector a. The inner product of a ¼ ða1; . . . ; amÞ and b ¼ ðb1; . . . ; bmÞ in
F
m
2 is defined as a � b ¼ a1b1� . . . � ambm: For a Boolean function

f : Fm
2 ! F2, we define the function weight, wt, as

follows: wtðf Þ ¼ jfa 2 F
m
2 jf ðaÞ ¼ 1gj:

The special parameter Q of a vectored Boolean function u : Fm
2 ! F

m
2 is

defined to be
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Q uð Þ ¼ min
a;b;b6¼0;wt a�x� b�u xð Þð Þ6¼2m�1

wt að Þ þ wt bð Þ� �
:

� Rewrite (simplify) the definition of QðuÞ when the function u is linear
(recall that a function ‘ is linear if ‘ðx� yÞ ¼ ‘ðxÞ� ‘ðyÞ for any x, y).

� Rewrite the definition of QðuÞ in terms of linear codes when the linear
function u is given by an m � m matrix M over F2 (i.e., uðxÞ ¼ Mx).

� Find the tight upper bound for QðuÞ as a function of m.
� Can you give an example of the function u with the maximal possible

value of Q?

Solution
A special parameter Q considered in the problem is called the “linear
branch number” of a transformation (Daemen and Rijmen 2002). This
problem is a linear cryptanalysis equivalent to the problem “A special
parameter” of NSUCRYPTO-2014 (Agievich et al. 2015), where the differ-
ential branch number was discussed.
Let u be a vectored Boolean function F

m
2 ! F

m
2 .

� If u is a linear function, then the Boolean function a � x� b � uðxÞ is
also linear for any vectors a; b 2 F

m
2 . Hence, the condition wtða � x� b �

uðxÞÞ 6¼ 2m�1 is equivalent to a � x� b � uðxÞ ¼ 0 for all x 2 F
m
2 . Thus,

for the considered case we have the definition

Q uð Þ ¼ min
a;b;b6¼0;a�x� b�u xð Þ�0

wt að Þ þ wt bð Þ� �
:

� Let us consider vectors as columns. In the case when uðxÞ ¼ Mx for
some m � m matrix M over the field F2, we can rewrite
a � x� b � uðxÞ ¼ ða�MTbÞ � x. Then, ða�MTbÞ � x � 0 implies
a�MTb ¼ 0 or Hc ¼ 0, where H ¼ ðIjMTÞ is a m� 2m matrix, I is the
identity m � m matrix, and c ¼ ða; bÞ denotes the concatenation of vec-
tors a and b of length 2m. Note that b ¼ 0 and a ¼ MTb imply a ¼ 0:
So, b 6¼ 0 is equivalent to c 6¼ 0. Thus,

Q uð Þ ¼ min
c6¼0;Hc¼0

wt cð Þ� � ¼ dist Cð Þ;

where C is the linear code of length 2m and dimension m with a
parity-check matrix H and distðCÞ denotes the distance of code C.

� Here we would like to apologize to the participants since the formula-
tion of the problem was not correctly stated. If we consider a mapping
u : Fm

2n ! F
m
2n instead of u : Fm

2 ! F
m
2 , then one can easily find the

bound QðuÞ6mþ 1, and this bound is tight for various parameters n
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and m. Indeed, there exist maximal distance separable codes with
parameters ½2m;m;mþ 1� over F2n (for example, Reed-Solomon codes).

At the same time, for u : Fm
2 ! F

m
2 as it was given in the problem, the

bound QðuÞ6mþ 1 can be achieved only when m¼ 1. So, we cannot say
that this bound is tight for various m. Therefore this bound cannot be con-
sidered as a correct answer.
To be honest, we cannot say the correct answer to the problem, so we

may assume that this problem is also one of the open problems of the
Olympiad. What was surprising and very pleasant for us is that several
teams found nontrivial bounds for general and linear cases. But unfortu-
nately, they could not say if these bound were tight. We would like to
shortly present the main results of the participants.
The linear case: QðuÞ6ð2mþ 4Þ=3. This bound was found by Irina

Slonkina (National Research Nuclear University MEPhI).
Let us consider any m�m matrix S over the field F2 and a linear func-

tion usðxÞ ¼ Sx. So,

Q usð Þ ¼ min
b6¼0

wt bSð Þ þ wt bð Þ
� �

:

It is clear that for any i; j 2 f1; 2; . . . ;mg; i 6¼ j, the following bounds
hold:

QðusÞ6wt Sið Þ þ 1 and Q usð Þ6wtðSi� SjÞ þ 2;

where Si; Sj 2 F
m
2 are ith and jth rows of the matrix S. Then it holds that

QðusÞ�26wtðSi� SjÞ62m�wtðSiÞ�wtðSjÞ6
62m�ðQðusÞ�1Þ�ðQðusÞ�1Þ ¼ 2m�2QðusÞ þ 2;

where the second bound follows from the inequality
wtðu� vÞ62m�wtðuÞ�wtðvÞ that holds for any u; v 2 F

m
2 . Thus, for the

function us we have the bound QðusÞ6ð2mþ 4Þ=3:
The general case: If m> 2, then QðuÞ6m.
This bound was found by the Alexey Miloserdov, Saveliy Skresanov, and

Nikita Odinokih team (Novosibirsk State University) and by the Kristina
Geut and Sergey Titov team (Ural State University of Railway Transport).
Here we present the solution of the first team.
Let f : Fn

2 ! F2. The Walsh transform of f is defined as Wf ðyÞ ¼P
x2Fn

2
ð�1Þy�x� f ðxÞ; y 2 F

n
2: The function f is uniquely defined by its Walsh

coefficients since the following equality holds:

�1ð Þf xð Þ ¼ 1
2n

X
y2Fn

2

Wf yð Þ �1ð Þy�x; x 2 F
n
2 :
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It is also well known that Parseval’s equality,
P

y2Fn
2
W2

f ðyÞ ¼ 22n, holds
for any Boolean function f.

Proposition: Let f : Fn
2 ! F2. Suppose that for every a 2 F

n
2 such that

06wtðaÞ6n�1 it holds that wtða � x� f ðxÞÞ ¼ 2n�1. Then, f ðxÞ ¼
x1� x2� . . . � xn � c for some c 2 F2.

Proof. Since a function a � x� f ðxÞ is balanced if Wf ðaÞ ¼ 0, then by
Parseval’s equality and the assumption of the proposition we have Wf ðaÞ ¼
0 for all a 2 F

n
2 such that 06wtðaÞ6n�1 and jWf ð1Þj ¼ 2n, where

1 ¼ ð1; 1; . . . ; 1Þ 2 F
n
2. In this case it holds that

ð�1Þf ðxÞ ¼ 62n
2n ð�1Þ1�x; x 2 F

n
2;; that is, f ðxÞ ¼ x1� x2� . . . � xn� c; for

some c 2 F2.

Corollary. QmaxðmÞ6m for m> 2, where QmaxðmÞ ¼ maxu:Fm
2!F

m
2
QðuÞ.

Proof. Denote b1 ¼ ð1; 0; 0; . . . ; 0Þ 2 F
m
2 ; b2 ¼ ð0; 1; 0; . . . ; 0Þ 2 F

m
2 . Assume

that there exists some u such that QðuÞ>m. It implies
wtða � x� bi � uðxÞÞ ¼ 2m�1, i¼ 1, 2 for any constant a 2 F

m
2 such that

06wtðaÞ6m�1. Then, by the proposition it holds bi � uðxÞ ¼ 1 � x� ci; for
some ci 2 F2, i¼ 1, 2. Thus, the sum modulo 2 of the first and second
coordinate functions of u is a constant function. Hence, wtðb � uðxÞÞ 2
f0; 2mg; where b ¼ ð1; 1; 0; . . . ; 0Þ 2 F

m
2 . But then we have QðuÞ62; that is

a contradiction.

Problem: “Scientists”

Formulation
Alice and Bob, two young cryptographers and very curious students,
studied different cryptosystems and attacks on them. At the same time they
were very interested in biographies of famous scientists and found out one
interesting property that can be used in cryptosystems. They chose three
pairs of scientists:

Charles Darwin and Michael Faraday,
Werner Heisenberg and Johannes Kepler,

Hans Christian Orsted and Mikhail Lomonosov.

Alice and Bob chose a cryptosystem and an attack they would like to
study. They constructed three sets of parameters for the cryptosystem, one
set according to each pair of scientists. Then Alice chose a phrase consist-
ing of 18 English letters (spaces were omitted) and divided it into three
parts of six letters each. She represented each part as a hexadecimal
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number using ASCII code. Alice encrypted the first part by the cryptosys-
tem for each set of parameters, then did the same for the second and the
third parts. Finally, Alice got the following three groups of three cipher
texts (in hexadecimal notation).

She asked Bob to decrypt it using the attack! Bob successfully read the
secret phrase. Could you

� find the property like Alice and Bob,
� understand what is the cryptosystem and the attack chosen,
� decrypt the cipher text by applying this attack?

	What word should be added at the beginning of the decrypted text
according to the famous words of Mikhail Lomonosov?

Solution
The problem is related to the RSA cryptosystem (Rivest, Shamir, and
Adleman 1978) and the broadcast attack is related to Hastad 1988. Given
pairs of famous scientists, some participants made a correct guess that each
of the pairs is linked to some prime numbers P, Q, and the RSA modulus
N ¼ PQ. But what is the way to obtain the prime numbers? Success in
their searches depends only on their intuition. Writing down the birthdate
of each of the scientists in the form DDMMYYYY, one can notice that all
these seven- or eight-decimal numbers are prime:

P1 ¼ 12021809 and Q1 ¼ 22091791;
P2 ¼ 5121901 and Q2 ¼ 27121571;
P3 ¼ 14081777 and Q3 ¼ 19111711:

This is the property Alice and Bob found in the biographies of
the scientists.
Since Alice encrypted each part of the original text thrice, in order to

decrypt it we can try to apply Hastad’s broadcast attack on RSA as it is
described in Boneh 1999. Three pairs of parameters should indicate that
e¼ 3 was chosen as the public exponent. This is not a good decision on
the part of Alice and Bob. A valid public exponent must be coprime with
uðNÞ because that makes it possible to compute the private exponent,
whereas three divides either uðN1Þ;uðN2Þ or uðN3Þ. Two solutions noted
this weird choice and both of them are marked as the best solutions.

Part 1 Part 2 Part 3

Set of parameters 1 2512 1F5A 0079 B494 222D 3E1C 275E B751 4FDB
Set of parameters 2 3D0D 6812 0443 5111 5BFD 9398 0815 6223 2698
Set of parameters 3 1EDC 4856 8CE2 9C18 2A32 B9AB 9A1C AD5C 25D7
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Nevertheless, it is still reasonable to use the Chinese remainder theorem
and take the cubic root. In other words, by applying Hastad’s broadcast
attack we obtain three parts of the message encrypted. Converting them
back to ASCII characters we get the plaintext PUTSTHEMINDINORDER,
which means PUTS THE MIND IN ORDER. This is a part of the famous
phrase by a distinguished Russian scientist Mikhail Lomonosov, who said
that “Mathematics should be studied because it puts the mind in order.”
Consequently, the first word of the quote is “mathematics”.
The participants presented two comprehensive solutions at the first

round and seven at the second round. One more solution turned out to be
almost complete: authors pointed to a wrong word as the beginning of
Lomonosov’s statement. The best solutions were proposed by the team of
Daniel Malinowski and Michal Kowalczyk (University of Warsaw, Dragon
Sector) and by the team of Alexey Ripinen, Oleg Smirnov, and Peter
Razumovsky (Saratov State University).

Problem: “Masking”

Formulation
It is known that there are attacks on cryptosystems that use information
obtained from the physical implementation of a cryptosystem; for example,
timing information, power consumption, electromagnetic leaks, or even
sound. To protect cryptosystems from such attacks cryptographers can use
a countermeasure known as masking.
Correlation-immune Boolean functions can reduce the masking cost.

Therefore, we need to search for Boolean functions that satisfy the follow-
ing conditions: they should have a small Hamming weight, for implementa-
tion reasons, and a high correlation immunity to resist an attacker with
multiple probes.
Let f be a nonconstant Boolean function in 12 variables of correlation

immunity equal to 6.

� What is the lowest possible Hamming weight k of f?
� Give an example of such a function f with Hamming weight k.

Remarks.
1. Hamming weight wtðf Þ of a Boolean function f in n variables is the

number of vectors x 2 F
n
2 such that f(x)¼ 1.

2. A Boolean function f in n variables is called correlation immune of
order t, where t is an integer such that 16t6n, if wtðf a1;:::;ati1;:::;it Þ ¼ wtðf Þ=2t
for any set of indexes 16i1 < ::: < it6n and any set of values
a1; :::; at 2 F2. Here f a1;:::;ati1;:::;it denotes the subfunction of f in n – t
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variables that is obtained from f ðx1; :::; xnÞ by fixing each variable xik by
the value ak, 16k6t.

Solution
First we should note that this problem contains open questions in general.
We considered the participants’ solutions as correct if they were as deep as
solutions known to the Olympiad Program Committee. More precisely, we
expected from the participants Boolean functions in 12 variables of weight
1,024 that are correlation immune of order 6.
Let f be a nonconstant Boolean function in n variables of correlation

immunity t and of Hamming weight k. The known open problem is to find
such a function f having as low as possible Hamming weight for various n
and t. The problem questions were investigated in Bhasin, Carlet, and
Guilley 2013 as well as Picek et al. 2015, where minimal Hamming weight
k¼ 1,024 of f for n¼ 12 and t¼ 6 was found using heuristics (more pre-
cisely, evolutionary algorithms). Theoretically, k can be lower than 1,024,
but any example of such a function is unknown. It can be equal to any
value of the form k ¼ 64‘ greater than or equal to 768 according to the
results of orthogonal arrays (Hedayat, Sloane, and Stufken 1999). It is
known that the elements of the support of f form the rows of an orthog-
onal array with parameters ðk; n; 2; tÞ (recall that x 2 F

n
2 belongs to the sup-

port of f if f(x)¼ 1).
We present several constructions of f proposed by the participants.

1. The first compact example was obtained by the team of Maxim
Plushkin, Ivan Lozinskiy, and Azamat Miftakhov (Lomonosov Moscow
State University). They found the following function:

f x1; :::; x12ð Þ ¼ x1� x2� x3� x4� x5� x6� x7� 1ð Þ�
x6� x7� x8� x9� x10� x11� x12� 1ð Þ:

Note that the team studied the problem for a small number of varia-
bles n up to 14 and correlation-immunity t ¼ n=2. For example, they
found a function in 10 variables with the Hamming weight k¼ 256
constructed similarly to the case of 12 variables:

f x1; :::; x10ð Þ ¼ x1� x2� x3� x4� x5� x6� 1ð Þ�
x5� x6� x7� x8� x9� x10� 1ð Þ:

And as proved in Bhasin, Carlet, and Guilley (2013) this weight can-
not be lower.
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2. Another solution was found by Alexey Udovenko (University of
Luxembourg) in the following way:

f x1; :::; x12ð Þ ¼ s1� s1s2� s1s3� s2s3;

where s1 ¼ x1� x2� x3� x4; s2 ¼ x5� x6� x7� x8; s3 ¼ x9� x10
� x11� x12: Alexey also mentioned that in the case of the quadratic
function in 12 variables the Hamming weight cannot be less than
1,024 (Proposition 1.9 of Canteaut 2016). Note that he concentrated
his search on quadratic functions whose graphs of quadratic terms
have multiple automorphisms. This idea was supported by studying
the graph of quadratic terms of a function f with parameters n¼ 6,
t¼ 3, and k¼ 16. Alexey computationally proved that, in this case,
16 is the minimal Hamming weight of f.

3. The third interesting example was proposed by Anna
Taranenko (Sobolev Institute of Mathematics) and can be described as
follows:

f x1; :::; x12ð Þ ¼ 1() u x1; x2; x3ð Þ þ u x4; x5; x6ð Þ þ u x7; x8; x9ð Þ
þ u x10; x11; x12ð Þ ¼ 0;

whereþ denotes the addition in Z4 and u takes the following values:
uð0; 0; 0Þ ¼ uð1; 1; 1Þ ¼ 0;uð1; 0; 0Þ ¼ uð0; 1; 1Þ ¼ 1; uð0; 1; 0Þ ¼
uð1; 0; 1Þ ¼ 2;uð0; 0; 1Þ ¼ uð1; 1; 0Þ ¼ 3: Anna presented a mathem-
atical proof that the function f is correlation immune of order 7 (and
therefore 6) with the Hamming weight 1,024. She also mentioned
that for a 12-variables function of correlation-immunity 7 the min-
imal Hamming weight is exactly 1,024 according to the Bierbrauer-
Friedman inequality for parameters of orthogonal arrays (Bierbrauer
1995; Friedman 1992).

Overall only these three teams mentioned above made significant progress
with this problem.

Problem: “TwinPeaks”

Formulation
On Bob’s smartphone there is a program that encrypts messages with the
algorithm TwinPeaks. It works as follows:

1. It takes an input message P that is a hexadecimal string of length 32
and represents it as a binary word X of length 128.

2. Then X is divided into four 32-bits words a; b; c; d.
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3. Then six rounds of the following transformation are applied:

a; b; c; dð Þ  aþ cþ S cþ dð Þ; aþ bþ d þ S cþ dð Þ;
�
aþ cþ d; bþ d þ S cþ dð ÞÞ;

where S is a secret permutation from F
32
2 to itself andþ denotes the

coordinate-wise sum modulo 2.
4. The word Y is obtained as a concatenation of a; b; c; d.
5. Finally, Y is converted to the hexadecimal string C of length 32. The

algorithm gives C as the cipher text for P.

Agent Cooper intercepted the cipher text
C ¼ 59A0D027D032B394A0A47A9ED19C98A8

sent from Bob to Alice and decided to decrypt it.
In order to solve this problem Agent Cooper also captured Bob’s smart-

phone with the TwinPeaks algorithm. Here it is. Now Cooper (and you
too) can encrypt any messages with TwinPeaks but still cannot decrypt a
single one.
Help Cooper to decrypt C.

Solution
Let F be the round transformation of TwinPeaks:

F a; b; c; dð Þ ¼ aþ cþ S cþ dð Þ; aþ bþ d þ S cþ dð Þ;
�
aþ cþ d; bþ d þ S cþ dð ÞÞ

and

f a; b; c; dð Þ ¼ cþ d; aþ bþ c; aþ b; bþ cþ dð Þ:
If F transforms a message ða; b; c; dÞ to ða0; b0; c0; d0Þ, then G transforms a
message f ða; b; c; dÞ to f ða0; b0; c0; d0Þ, where G acts as follows:

G a; b; c; dð Þ ¼ bþ S að Þ; c; d; að Þ:
This conclusion can be extended to all six rounds. It will be convenient

to consider a modification of TwinPeaks, where F is replaced by G. Indeed,
one can encrypt a message ðx1; x2; x3; x4Þ, where xi 2 F

32
2 , using the modi-

fied algorithm in the following way:

1. Encrypt f�1ðx1; x2; x3; x4Þ ¼ ðx1 þ x3 þ x4; x1 þ x4; x2 þ x3; x1 þ x2 þ x3Þ
with TwinPeaks.

2. Transform the encryption result using f.

Figure 3 illustrates the modified TwinPeaks. As one can see, plaintexts
and cipher texts are linked with the following relations:
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y1 ¼ x3 þ S x2 þ S x1ð Þ
� �þ S y4ð Þ;

y2 ¼ x4 þ S x3 þ S x2 þ S x1ð Þ
� �� �

;
y3 ¼ x1 þ S y2ð Þ;
y4 ¼ x2 þ S x1ð Þ þ S y3ð Þ:

Cooper can choose as x1 any value u and get its representation in the
form u ¼ vþ SðwÞ, where v ¼ y3 and w ¼ y2. Moreover, Cooper can rep-
resent w in the form v0 þ Sðw0Þ and finally get a representation

u ¼ vþ S v0 þ S w0ð Þð Þ:

Suppose that Cooper wants to find x1. Then he represents

y2 ¼ vþ S v0 þ S w0ð Þð Þ

(two requests to TwinPeaks) and encrypts ðw0; v0; v; y3Þ (one request).
The second word of the cipher text is

y3 þ S vþ S v0 þ S w0ð Þð Þð Þ ¼ y3 þ S y2ð Þ ¼ x1:

Since Cooper is able to find x1 given ðy1; y2; y3; y4Þ, he can calculate S(u)
for all u. Indeed, Cooper can choose y2 ¼ u and an arbitrary y1; y3; y4.
Then he finds x1 and SðuÞ ¼ x1 þ y3. This can be completed using
three requests.

Figure 3. Modified TwinPeaks.

160 A. GORODILOVA ET AL.



Using six requests Cooper can find Sðx1Þ þ Sðy3Þ and, hence, x2. Another
six requests is enough to find Sðx2 þ Sðx1ÞÞ þ Sðy4Þ and, hence, x3. Finally,
using three request he finds Sðx3 þ Sðx2 þ Sðx1ÞÞÞ and, hence, x4.
Thus, one needs 3þ 6þ 6þ 3 ¼ 18 requests to decrypt the message.

The answer is 43ABECCAA53CB953F35239E79CC900EE.

Correct solutions were proposed by twenty teams of university students
and professionals. All of them used different methods and techniques. We
did not identify a single best solution, but we are pleased to note the par-
ticipants’ professionalism and creativity in solving the problem.

Problem: “An addition chain”

Formulation
In many cryptographic systems we need to calculate the value B ¼
Ac mod p; where A is an integer, 16A6p�1, c is an arbitrary positive inte-
ger, and p is a large prime number. One possible way of reducing the com-
putational load of calculation is to minimize the total number of
multiplications required to compute the exponentiation. Since the exponent
in the equation is additive, the problem of computing powers of the base

Figure 4. Awards ceremony at Novosibirsk State University, December 2017.

Figure 5. The NSUCRYPTO winners of different years.
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element A can also be formulated as an addition calculation for which add-
ition chains are used.
An addition chain for an integer n is a sequence of positive integers

a0 ¼ 1; a1; . . . ; ar�1; ar ¼ n; where r is a positive integer (called the length
of the addition chain) and the following relation holds for all i,
16i6r: ai ¼ aj þ ak for some k; j such that k6j< i:
Find an addition chain of length as small as possible for the

value 2127�3:
The solution should be submitted as a list of values occurring in the

chain and a description of how you found the solution. An example of the
shortest addition chain for the value 15 can be found in formulation of the
problem “The shortest addition chain”.

Solution
We should note that the problem contains open questions in general. We
considered the participants’ solutions as correct if they are as deep as solu-
tions known to the Olympiad Program Committee. More precisely, if the
participants could find an addition chain of length 136.
We would like to follow the solution proposed by the team of Alexey

Miloserdov, Saveliy Skresanov, and Nikita Odinokih (Novosibirsk State
University). Denote by ‘ðnÞ the length of the smallest addition chain for a
number n. Let us first prove that ‘ð2127�3Þ6136 and present a chain of
length 136. Then we will consider several lower bounds for ‘ð2127�3Þ.
It is easy to see that

2127�3 ¼ 4ð2125�1Þ þ 1:

We have two inequalities for any n;m>11: ‘ðnþ 1Þ6‘ðnÞ þ 1 and
‘ðnmÞ6‘ðnÞ þ ‘ðmÞ. So, we can conclude that ‘ð2127�3Þ6‘ð2125�1Þ þ 3,
since ‘ð4Þ ¼ 2.
An addition chain a0 ¼ 1; a1; . . . ; ar�1; ar ¼ n is called a “star chain” for

n if for each 16i6r there exists 06j< i such that ai ¼ ai�1 þ aj. Denote by
‘	ðnÞ the length of the shortest star chain for the number n. It is easy to
see ‘ðnÞ6‘	ðnÞ. The following inequality holds by the famous Brauer’s the-
orem (Brauer 1939): ‘ð2m�1Þ6m�1þ ‘	ðmÞ for any m>1. The chain
1; 2; 3; 5; 10; 20; 25; 50; 100; 125 is a star chain for 125 of length 9. It is
known [A003313] that ‘ð125Þ ¼ 9. So, the chain for 125 found above is the
shortest one. Thus,

‘ 2127�3ð Þ6125�1þ 9þ 3 ¼ 136:

A required chain of length 136 for 2127�3 is presented in Table 3.
There also exist several lower bounds that participants referred to.
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1. First, one could notice that addition chains of length less than 127 can-
not produce numbers greater than 2126. So, we have ‘ð2127�3Þ> 126.

2. A more strict bound ‘ð2127�3Þ> 132 comes from Sch€onhage’s theorem
(Sch€onhage 1975):

‘ nð Þ log 2 nð Þ� log 2 s nð Þð Þ�2:13;
where s(n) denotes the sum of the digits in the binary expansion
of n.

3. Also, there is the famous Scholz-Brauer conjecture (Scholz 1937):
‘ð2n�1Þ6n�1þ ‘ðnÞ for any n1. Moreover, for all n664 the inequal-
ity becomes the equality as shown in Clift (2011). If we suppose that
the conjecture is true and the equality always holds, then it can be
assumed that ‘ð2127�1Þ ¼ 127�1þ 10 ¼ 136 since ‘ð127Þ ¼ 10
[A003313]. Then it is easy to see that ‘ð2127�1Þ6‘ð2127�3Þ þ 1. Thus,
we have ‘ð2127�3Þ135, which is quite close to the shortest found
length of 136.

At the end, thirteen teams in the second round were able to find addition
chains of length 136 using different approaches and eight team presented
chains of lengths 137 and 138.

Problem: “Hash function FNV2”

Formulation
The FNV2 hash function is derived from the function FNV-1a (FNV
hash history 2013). FNV2 processes a message x composed of bytes
x1; x2; . . . ; xn 2 f0; 1; . . . ; 255g in the following way:

1. h h0;

Table 3. An addition chain of length 136 for 2127�3.
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2. for i ¼ 1; 2; :::; n: h ðhþ xiÞg mod 2128;
3. return h.

Here, h0 ¼ 144066263297769815596495629667062367629 and g ¼ 288 þ 315.
Find a collision: that is, two different messages x and x0 such that

FNV2ðxÞ ¼ FNV2ðx0Þ. Collisions on short messages and collisions that are
obtained without intensive calculations are welcomed. Supply your answer
as a pair of two hexadecimal strings that encode bytes of collid-
ing messages.

Solution
We provide a solution based on the Lenstra-Lenstra-Lov�asz (LLL) algo-
rithm. This idea was proposed by several teams.
First, it is clear that

FNV2 x1x2:::xnð Þ ¼ h0g
n þ x1g

n þ x2g
n�1 þ :::þ xng

� �
mod 2128:

Next, it is sufficient to solve the equation

z1g
n�1 þ z2g

n�2 þ :::þ zng
0 � 0 mod 2128ð Þ

in z1; z2; . . . ; zn 2 f�255; . . . ; 255g not equal to zero simultaneously.
Indeed, zi ¼ xi�yi for some xi; yi 2 f0; . . . ; 255g and

FNV2 x1; x2; :::; xnð Þ�FNV2 y1; y2; :::; ynð Þ

¼ g z1g
n�1 þ z2g

n�2 þ :::þ zng
0

� � � 0 mod 2128ð Þ:
The purpose is to construct a polynomial such that g is its root. Let us

define integer vectors e0; . . . ; en of length nþ 1 in the following way:

e0 ¼ ð0; :::; 0|fflfflffl{zfflfflffl}
n

; t � 2128Þ; where t is a small integer;

ei ¼ ð0; :::; 0|fflfflffl{zfflfflffl}
i�1

; 1; 0; :::; 0|fflfflffl{zfflfflffl}
n�i

; gn�i mod 2128Þ; where i 2 1; :::; nf g:

Let us add some z0 to z1; . . . ; zn and consider the linear combination

‘z ¼ z0e
0 þ :::þ zne

n ¼ z1; :::; zn; z0t2
128 þ z1g

n�1 þ z2g
n�2 þ :::þ zng

0
� �

:

To solve the problem it is sufficient to find a linear combination ‘z with
z1; . . . ; zn 2 f�255; . . . ; 255g and z0 ¼ 0. This can be done using the LLL
algorithm. It is a lattice-reduction algorithm that can find a short, nearly
orthogonal basis of he0; . . . ; eni. Obtaining such an LLL-reduced basis, we
check if it contains a vector ‘z with desired properties. According to the partic-
ipants’ results, this approach works well for some chosen (large) t and n
17.
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The problem was completely solved by five teams while five more teams
provided collisions on long messages. Table 4 contains some collisions pro-
posed by the participants.

Problem: “The image set” (unsolved)

Formulation
Let F2 be a finite field with two elements and n be any positive integer. Let
g(X) be an irreducible polynomial of degree n over F2. It is widely known
that the set of equivalence classes of polynomials over F2 modulo g(X) is a
finite field of order 2n; we denote it by F2n .
Characterize in a nonstraightforward way the image set (depending on

n) of the function F over Fn
2 defined as follows:

F xð Þ ¼ x3 þ x:

That is, characterize in a way that brings additional information, for
instance on its algebraic structure.
An example: For n¼ 3 we can take gðXÞ ¼ X3 þ X þ 1, then each elem-

ent of the field F23 can be written as a polynomial of degree at most two:
a0 þ a1X þ a2X2, with a0; a1; a2 2 F2. We can calculate the table of multi-
plication in F23 modulo g(X), while the table of addition just corresponds
to adding polynomials over F2. For example,

1þ X þ X2ð Þ þ X þ X2ð Þ ¼ 1;
X þ X2ð Þ 1þ X2ð Þ ¼ X þ X2 þ X3 þ X4 ¼ 1þ X mod g Xð Þ� �

:

Now we can calculate all the elements of the image set of F(x). Indeed,

F xð Þjx 2 F23
� � ¼ 0; 1; 1þ X; 1þ X2; 1þ X þ X2

� �
:

Then we note that this is the union of {0} and the affine plane
1þ f0;X;X2;X þ X2g. In our case it is a desirable algebraic structure of
this set.
You need to study this problem for an arbitrary n (or some par-

tial cases).

Remarks: Functions over the finite field of order 2n are of great interest for
use in cryptographic applications; for example, as S-boxes. For instance, an
AES S-box is based on the inverse function over F28 . But in fact, there are

Table 4. Collisions of FNV2.
Message 1 Message 2

808080808080808080808080808080808080 a55eca84915f926b4a5f8146c78d8a75d893
8080808080808080808080808080808080 c07b375db56d8aceac504381d06696389f
8c2565b0f35411600c3c0e20e21235 cb6163c5f3
“���� NSU CRYPTO IS FUN! ����” 82857b83274c57531e44524e49564b175351273f48572a1c79807c7a
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many open problems in fields of finding new constructions and descrip-
tions of cryptographically significant functions!

Solution
There were no complete solutions for this problem. Some participants pro-
posed nice ideas. Unfortunately, no one could push these ideas far enough
to get significant results. Some did not understand what we were looking
for (they focused on the number of solutions, which is known from Mullen
and Panario 2013).
The best solution attempts were proposed by Alexey Udovenko

(University of Luxembourg) and by the team of Nikolay Altukhov, Roman
Chistiakov, and Evgeniy Manaka (Bauman Moscow State Technical
University). The first solution characterized the case of one preimage (that
is classical), showed a property by the algebraic degree (which gives weak
insight on the structure, but it was a nice idea), and finished with observa-
tions that are nice but not specific. The second one had an idea of using
the greatest common divisor and tried to calculate it, but did not com-
plete it.
We would also like to recall a known result that may be useful for solv-

ing the problem.

Theorem. Let t1, t2 denote the roots of t2 þ bt þ a3 ¼ 0 in F22n , where a 2
F2n ; b 2 F

	
2n (Williams 1975). Then the factorization of f ðxÞ ¼ x3 þ axþ b

over F2n is characterized as follows:

� f has three zeros in F2n if and only if trnða3b2 þ 1Þ ¼ 0, where trn is the
absolute trace function and t1; t2 are cubes in F2n (n even), F22n (n odd).

� f has exactly one zero in F2n if and only if trnða3b2 þ 1Þ ¼ 1:
� f has no zero in F2n if and only if trnða3b2 þ 1Þ ¼ 0 and t1; t2 are not

cubes in F2n (n even), F22n (n odd).

This result depends on t1 and t2 and; when b 6¼ 0, the change of vari-
able x ¼ bt transforms the equation t2 þ bt þ a3 ¼ 0 into the equation
x2 þ x ¼ a3

b2. So, it may be useful to recall the following fact.

Theorem. Let n be any positive integer and b 2 F2n (Zinoviev 1996). A
necessary and sufficient condition for the existence of solutions in F2n of
the equation x2 þ x ¼ b is that trnðbÞ ¼ 0. Assuming that this condition is
satisfied, the solutions of the equation are
x ¼Pn�1

j¼1 b2
jðPj�1

k¼0 c
2kÞ and x ¼ 1þPn�1

j¼1 b2
jðPj�1

k¼0 c
2kÞ, where c is any

(fixed) element such that trnðcÞ ¼ 1.
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Problem: “Boolean hidden shift and quantum computings” (unsolved)

Formulation
The following longstanding problem is known. Let f : Fn

2 ! F2 be a given
Boolean function. Determine the hidden nonzero shift a 2 F

n
2 for the func-

tion (i.e., a vector such that faðxÞ ¼ f ðx� aÞ for all x 2 F
n
2. This should be

done while it has limited access to an oracle for the shifted Boolean func-
tion fa with unknown shift a (i.e., a black box, which computes the func-
tion f ða� xÞ for a given vector x). Such a problem is called the Boolean
hidden shift problem (BHSP).
To solve this problem on a quantum computer, an oracle that computes

the shifted function in the phase is used. This oracle can be implemented
using only one query to an oracle that computes the function in a register.
The phase oracle is a unitary operator defined by its action on the compu-
tational basis Ofa : jxi7!ð�1Þf ðx� aÞjxi, where jxi is the index register. The
quantum query complexity is the minimum number of oracle Ofa accesses
needed in the worst case to solve the problem.
There are two classes of Boolean functions for which the quantum query

complexity is minimal and maximal, respectively:

� for any bent function (i.e., a function with an even number of variables
that is on the maximal possible Hamming distance from the set of all
affine functions) one quantum query suffices to solve the problem
exactly (Roetteler 2010);

� for any delta function (i.e., f ðxÞ ¼ dx;x0 for some x0 2 F
n
2) the quantum

query complexity is Hð2n=2Þ, which is equivalent to Grover’s search
(Bennett et al. 1997; Grover 1996).

For any Boolean function f in n variables QðBHSPf Þ ¼ Oð2n=2Þ; where
QðBHSPf Þ is the bounded error quantum query complexity of the BHSP
for f . Moreover, it holds (Childs et al. 2013)

Q BHSPfð Þ6p
4

2n=2ffiffiffiffiffiffiffiffiffiffiffi
wt fð Þp þ O

ffiffiffiffiffiffiffiffiffiffiffi
wt fð Þ

p	 

;

when 16wtðf Þ62n�1 and where wtðf Þ is the Hamming weight of f .
The problem to solve is the following: Identify natural classes of

Boolean functions in an even number of variables lying between the two
extreme cases of bent and delta functions and characterize the quantum
query complexity of the BHSP for these functions (Childs et al. 2013).
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Solution
The Boolean hidden shift problem is a particular noninjective case of the
well-known hidden shift problem. There were no complete solutions for
this problem. Some attempts to use known results from quantum computa-
tion, including quantum certificate complexity, were made by the team of
Andrey Kalachev, Danil Cherepanov, and Alexey Radaev (Bauman Moscow
State Technical University), but no detailed descriptions of classes of
Boolean functions with query complexity of BHSP distinct from two known
extremal cases were given.

Problem: “Useful proof of work for blockchains” (unsolved)

Formulation
A proof-of-work system is one of the key parts of modern blockchain-
based platform implementations, such as the cryptocurrencies Bitcoin or
Ethereum. Proof-of-work means that the user is required to perform some
work in order to request some service from the system (e.g., to send an
email or create a new block of transactions for the blockchain).
For example, in the Bitcoin system, if some user wants to create a block

of transactions and add it to the chain, the hash value of his block must
satisfy certain conditions that can be achieved by iterating a special variable
X inside the block many times and checking the resulting hash value on
every iteration.
What is important about the problem in a proof-of-work system is

the following:

� It is known that the solution for the problem exists, and it is also
known how many iterations (on average) are required to find it using
the best-known algorithm A;

� There are no algorithms for solving the problem that perform signifi-
cantly better than A; it is also believed that such algorithms will not
soon be found;

� The problem depends on some input data I, so you cannot find solu-
tions for the problem in advance (before input I is known) and then
use these solutions without performing any work;

� Given a problem and a solution to it, it is easy to verify that the pro-
vided solution is correct.

Unfortunately, solving the problem of finding specific hash values (used
in Bitcoin and Ethereum) does not yield any information that is useful out-
side the system; therefore, tremendous amounts of calculations performed
to solve the problem are wasted.
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Some other implementations of proof-of-work systems solve this issue.
For example, solutions for proof-of-work problems used in the cryptocur-
rency Primecoin give us special chains of prime numbers that are useful
for scientific research.
Your task is to construct a problem P that can be used in a proof-of-

work system such that information obtained in the process of solving it
can be useful outside the system. More formally:

� P is, in fact, a family of problems parametrized by two variables: I
(input data, you can assume that I is a 256 bit string, or introduce other
sensible formats), and C (complexity, e.g., some positive integer). For
fixed input and complexity, PðI;CÞ is a problem that can be solved by
using some algorithm A (should be provided in your solution to this
task). It should not be possible to find a provable solution for the prob-
lem PðI;CÞ if I is not known;

� Average time T (amount of computational steps or iterations) required
to find a solution of PðI;CÞ using algorithm A is known (assuming
input data I is chosen randomly and uniformly) and depends on C, so
T ¼ TðCÞ and TðCÞ can be made very small, infeasibly large, or some-
thing in between by adjusting complexity variable C;

� It should be easy to verify whether any provided solution is correct
or not;

� Any kind of proof that there are likely no significantly better algorithms
for solving P than the given algorithm A is desirable. For example, a proof
that proposed the problem is NP-hard or any other considerations;

� You should describe how information obtained in the process of solving
P can be useful outside of the proof-of-work system.

For example, in the Bitcoin system PðI;CÞ is a problem of finding an
integer X such that if we apply the SHA-256 hash function to the pair
ðI;XÞ twice, the resulting hash value, represented as an integer, will not be
greater than C. Here C is a nonnegative integer that defines the complexity
of the problem and I—a block header containing information about all
transactions included in it along with some other information—is an input.

Solution
There were no complete solutions for this problem. Many contestants pro-
posed using NP-hard problems for proof-of-work, but no detailed descrip-
tions of how to convert a hard problem into a proof-of-work were
provided. In some solutions input data were not linked with the problem.
In other solutions the condition of “easy verifiability” of the solution to the
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problem was not satisfied: it is not easy to check for a “no” answer in an
NP-hard decision problem.
An interesting approach for constructing useful proof-of-work was pro-

posed by Carl L€ondahl (Sweden). Suppose that we ask a user to solve two
problems, say P1 and P2. Problem P1 is a regular hash-seeking problem such
as the one used in Bitcoin. It is easy to link an input with such a problem in
order to adjust its difficulty. Problem P2 is some problem based on an NP-
hard problem, and P2 input is based on the solution of P1: P2 that can have
larger variance in time complexity, but we can make average time complexity
be dominated by P1, thus keeping overall proof-of-work time consumption
more consistent. At the same time, we will be obtaining solutions for some
NP-hard problems in the process of obtaining proof of work.

Winners of the Olympiad

Please see Tables 5–10 for the names of and information about the winners
of NSUCRYPTO-2017.

Table 5. Winners of the first round in school section A (in the category “school student”).
Place Name Country, City School Score

1 Alexander Grebennikov Russia, Saint Petersburg Presidential PML 239 22
1 Ivan Baksheev Russia, Novosibirsk Gymnasium 6 21
2 Alexander Dorokhin Russia, Saint Petersburg Presidential PML 239 18
3 Vladimir Schavelev Russia, Novosibirsk SESC NSU 17
3 Borislav Kirilov Bulgaria, Sofia FPMG 17
Diploma Ana Kapros Romania, Rm Valcea National College Mircea cel Batran 10
Diploma Filip Dashtevski Macedonia, Kumanovo Yahya Kemal College 10
Diploma Andrei Razvan Romania, Craiova “Fratii Buzesti” National College 10
Diploma Stefan Zaharia Romania, Vaslui Lyceum Mihail Kogalniceanu 9
Diploma Ilia Krytsin Russia, Novosibirsk SESC NSU 9
Diploma Grigorii Popov Russia, Novosibirsk SESC NSU 8
Diploma Bogdan Circeanu Romania, Craiova “Fratii Buzesti” National College 8
Diploma Lenart Bucar Slovenia, Grosuplje Gymnasium Bezigrad 7
Diploma Maxim Desyatkov Russia, Kuibyshev SESC NSU 7

Table 6. Winners of the first round, section B (in the category “university student”).
Place Name Country, City University Score

1 Roman Lebedev Russia, Novosibirsk Novosibirsk State University 20
2 Robert Spencer United Kingdom, Cambridge University of Cambridge 15
3 Nikita Odinokih Russia, Novosibirsk Novosibirsk State University 14
3 Alexey Miloserdov Russia, Novosibirsk Novosibirsk State University 14
3 Dheeraj M. Pai India, Chennai Indian Institute of Technology, Madras 13
Diploma Alexey Solovev Russia, Moscow Lomonosov Moscow State University 10
Diploma Khai Hanh Tang Vietnam, Ho Chi Minh University of Science 9
Diploma Evgeniy Manaka Russia, Moscow Bauman Moscow State Technical University 9
Diploma Andrey Klyuev Russia, Moscow National Research Nuclear University MEPhI 8
Diploma Nikolay Altukhov Russia, Moscow Bauman Moscow State Technical University 8
Diploma Vladimir Bushuev Russia, Korolev Bauman Moscow State Technical University 8
Diploma Roman Chistiakov Russia, Moscow Bauman Moscow State Technical University 8
Diploma Mikhail Sorokin Russia, Moscow National Research Nuclear University MEPhI 8
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Table 7. Winners of the first round, section B (in the category “professional”).
Place Name Country, City Organization Score

1 Alexey Udovenko Luxembourg, Luxembourg University of Luxembourg 28
2 Henning Seidler Germany, Berlin TU Berlin 16
2 George Beloshapko Switzerland, Z€urich Google 15
3 Daniel Malinowski Poland, Warsaw University of Warsaw 12
Diploma Evgeniya Ishchukova Russia, Taganrog Southern Federal University 8
Diploma Egor Kulikov Germany, Munich dxFeed Solutions GmbH 8

Table 8. Winners of the second round (in the category “School Student”).
Place Name Country, City School Score

Diploma Filip Dashtevski, Gorazd Dimitrov Macedonia, Kumanovo Yahya Kemal College 8
Diploma Amalia Rebegea, Gabi Tulba-Lecu, Stefan Manolache Romania, Bucharest CNI “Tudor Vianu” 6

Table 9. Winners of the second round (in the category “university student”).
Place Name Country, City University Score

1 Roman Lebedev,
Vladimir Sitnov,
Ilia Koriakin

Russia, Novosibirsk Novosibirsk
State University

50

2 Alexey Miloserdov,
Nikita Odinokih,
Saveliy Skresanov

Russia, Novosibirsk Novosibirsk
State University

46

2 Maxim Plushkin, Ivan
Lozinskiy,
Azamat Miftakhov

Russia, Moscow Lomonosov Moscow
State University

44

3 Irina Slonkina Russia, Moscow National Research
Nuclear
University MEPhI

38

3 Ngoc Ky Nguyen,
Thanh Nguyen Van,
Phuoc Nguyen
Ho Minh

Vietnam, Ho Chi
Minh City

Bach Khoa University,
Ho Chi Minh
University
of Technology

34

3 Nikolay Altukhov,
Roman Chistiakov,
Evgeniy Manaka

Russia, Moscow Bauman Moscow
State
Technical University

32

Diploma Mikhail Sorokin,
Andrey Klyuev,
Anatoli Makeyev

Russia, Moscow National Research
Nuclear
University MEPhI

26

Diploma Oskar Soop, Joosep
J€a€ager, Andres Unt

Estonia, Tartu University of Tartu 26

Diploma Andrey Kalachev,
Danil Cherepanov,
Alexey Radaev

Russia, Moscow Bauman Moscow
State
Technical University

24

Diploma Dianthe Bose India, Chennai Chennai
Mathematical Institute

23

Diploma Mikhail Kotov, Oleg
Zakharov,
Sergey Batunin

Russia, Tomsk Tomsk
State University

20
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