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Abstract. Mathematical problems and their solutions of the Fourth International Students’
Olympiad in cryptography NSUCRYPTO’2017 are presented. We consider problems related to
attacks on ciphers and hash functions, cryptographic Boolean functions, the linear branch num-
ber, addition chains, error correction codes, etc. We discuss several open problems on algebraic
structure of cryptographic functions, useful proof-of-work algorithms, the Boolean hidden shift
problem and quantum computings.
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Introduction

The International Students’ Olympiad in cryptography NSUCRYPTO was held for the fourth time
in 2017. The idea of the Olympiad was born in Novosibirsk State University that is located in
the world-famous scientific center in the heart of Siberia — Akademgorodok. Now, the Olympiad
program committee includes specialists from Belgium, France, The Netherlands, USA, Norway,
India, Belarus’, Russia. At the same time the geography of participants is expanding year by year:
there were more than 1300 participants from 38 countries in 2014–2017.

Let us shortly formulate the format of the Olympiad (all information can be found on the official
website nsucrypto.nsu.ru). One of the Olympiad ideas is that everyone can participate: school
students, university students and professionals! Each participant chooses his/her category when
registering on the Olympiad website. The Olympiad consists of two independent Internet rounds:
the first one is individual while the second round is team. The first round is divided into two
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sections: A — for school students, B — for university students and professionals. Participants read
the Olympiad problems and send their solutions using the Olympiad website. The language of the
Olympiad is English.

Every year, participants are offered to solve several problems of different complexity at the
intersection of mathematics and cryptography. Another feature of the Olympiad is that it not only
includes interesting tasks with known solutions but also offers unsolved problems in this area. All
the open problems stated during the Olympiad history can be found at
nsucrypto.nsu.ru/unsolved-problems. On the website we also mark the current status of each
problem. For example, the problem “Algebraic immunity” (2016) was completely solved during the
Olympiad, a partial solution for the problem “A secret sharing” (2014) was proposed in [13]. We
invite everybody who has ideas how to solve the problems to send your solutions to us!

What was surprising and very pleasant for us this year is that the NSUCRYPTO Olympiad can
even change the professional life of people! Following are some examples of the feedback we have
received over the years:

“..Without having a 3rd ranking to go for PhD, I would give up in cryptography due to the
complex mathematic involve..” — Duc Tri Nguyen (Vietnam, 3rd places in 2016 and 2017); “..When
we join the competition, we just want to know where we are with our knowledge, want to test
ourself with our self-study Crypto, and want to improve our math in Cryptography..” — Quan
Doan (Vietnam, 3rd places in 2016 and 2017); “..The problems contain much knowledge not only
from mathematics and cryptography, but also many other fields such as art..” — Renzhang Liu
(China, 1st place in 2015); “..I sometimes find myself reading too much and this competition is
a great way of putting knowledge into practice by solving fun tasks..” — Dragos Alin Rotaru
(United Kingdom, 3d place in 2016); “..Its a contest that leaves you wanting to spend more time
on it after the deadline, just to work out the questions you didn’t get..” — Robert Spencer (United
Kingdom, 1st place in 2016, 2d place in 2017); “..Participation in the Olympiad offers you an
excellent opportunity to try yourself as a codebreaker and a cryptographer..” — Anna Taranenko
(Russia, 1st place in 2014, 2d places in 2015 and 2016, honorable diploma in 2017); “..Sometimes
you spend hours trying to solve a problem, sometimes it seems that it’s impossible to solve it. But
when you find a solution, usually so obvious, you experience an incomparable sense of delight. My
hat’s off to the person who think up such interesting tasks!..” — Evgeniya Ishchukova (Russia, 3d
place in 2016, honorable diplomas in 2015 and 2017). A complete list of comments can be found
at nsucrypto.nsu.ru/feedbacks.

The paper is organized as follows. We start with problem structure of the Olympiad in section 1.
Then we present formulations of all the problems stated during the Olympiad and give their detailed
solutions (section 2). Finally, we publish the lists of NSUCRYPTO’2017 winners in section 3.

Mathematical problems of the previous International Olympiads NSUCRYPTO’2014, NSU-
CRYPTO’2015, and NSUCRYPTO’2016 can be found in [2], [1], and [24] respectively.

1 Problem structure of the Olympiad

There were 16 problems stated during the Olympiad, some of them were included in both rounds
(Tables 1, 2). The school section of the first round consisted of six problems, whereas the student
section contained seven problems. Two problems were common for both sections. The second round
was composed of eleven problems; they were common for all the participants. Three problems of
the second round were marked as unsolved (awarded special prizes from the Program Committee).
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Table 1: Problems of the first round

N Problem title Maximum scores

1 PIN code 4

2 Chests with treasure 4

3 A numerical rebus 4

4 Timing attack 4

5 The shortest addition chain 4

6 A music lover 4

N Problem title Maximum scores

1 Timing attack 4

2 Treasure chests 4

3 A music lover 4

4 An infinite set of collisions 4

5 One more parameter 10

6 Scientists 8

7 Masking 10

A — school section B — student section

Table 2: Problems of the second round
N Problem title Maximum scores

1 The image set Unsolved

2 TwinPeaks 8

3 An addition chain 8

4 Hash function FNV2 8

5 A music lover 4

6 Boolean hidden shift and quantum computings Unsolved

7 One more parameter 10

8 Scientists 8

9 Masking 10

10 PIN code 4

11 Useful proof-of-work for blockchains Unsolved

2 Problems and their solutions

In this section we formulate all the problems of NSUCRYPTO’2017 and present their detailed
solutions with paying attention to solutions proposed by the participants.

2.1 Problem “PIN code”

2.1.1 Formulation

A PIN code P = p1p2 . . . pn is an arbitrary number consisting of a finite number of pairwise
different decimal digits in ascending order (p1 < p2 < . . . < pn). Bob got his personal PIN code in
the bank, but he decided that the code is not secure enough and changed it in the following way:

1. Bob multiplied his PIN code P by 999 and obtained the number A = a1a2 . . . am;
2. Then he found the sum of all digits of A: a1 + a2 + . . .+ am = S = s1s2 . . . sk;
3. Finally, he took all digits (starting from 0) that are smaller than s1, sorted them in ascending

order and inserted between digits s1 and s2 in the number S. The resulting number P ′ is Bob’s
new PIN code. For example, if S was 345, then, after such insertion we obtain P ′ = 301245.

Find the new code P ′!
Remarks. By p1p2 . . . pn we mean that p1, p2, . . . , pn are decimal digits and all digits over the

bar form a decimal number.

2.1.2 Solution

Let P = p1p2 . . . pn for some positive integer n. Let us note that P multiplied by 999 is the same
thing as P multiplied by 1000 minus P , that is shifting the number P on three positions to the left

3



minus itself. Let us consider this subtraction:

p1 p2 p3 p4 · · · pn 0 0 0
− p1 · · · pn−3 pn−2 pn−1 pn

Since p1 < p2 < . . . < pn by definition, we have that pn−3 < pn. Therefore, we borrow a unit only
from pn among p1, . . . , pn. Thus, the sum of digits of this difference is equal to

(10−pn)+(9−pn−1)+(9−pn−2)+(pn−1−pn−3)+(pn−1−pn−4) . . .+(p4−p1)+p3+p2+p1 = 27.

So, Bob’s new PIN code is 2017.
A lot of great and compact solutions were sent by the participants. The best solution in the

school section was by Lenart Bucar (Gimnazija Bežigrad, Grosuplje, Slovenia). Also we want to
note a detailed solution sent by Ivan Baksheev (Gymnasium 6, Novosibirsk, Russia).

2.2 Problem “Chests with treasure”

2.2.1 Formulation

We have three closed chests. Some of them contain treasures (diamonds, gold coins, bitcoins as
well) but we do not know which ones. A parrot knows which chests contain treasures and which
do not; he agrees to answer to questions with “yes” or “no”. He may possibly lie in his answers
but not more than once. List six questions such that it is possible to deduce from the answers of
the parrot which chests contain treasures and which do not.

2.2.2 Solution

Let us mark the chest with 0 if it does not contain the treasure, and with 1 if it does. Similarly,
let us write down parrot’s answers to our questions as 1’s (for “yes”) and 0’s (for “no”). Now the
state of chests is encoded with three bits of information and parrot’s answers give us six bits of
information. Taking into account that the parrot may or may not lie in one of his answers, one or
none of the bits among these six can be faulty.

So, our goal is to devise six questions in such a way, that six bits of obtained information can
be uniquely decoded to exactly one 3-bit state of chests, even if one bit of answers was not right.
In terms of coding theory, we need to construct an error-correcting code, which corrects one error.
In simple terms, we need to map every one of 23 = 8 chest states to a Boolean vector of length
six in such a way, that even if one bit in any of these image vectors gets flipped, we can uniquely
determine which vector it was before the error occurred.

To find such eight vectors it is sufficient to find eight vectors of length six, such that every two
of them are different in at least three bits. Even if we receive one of these vectors with a flipped
bit, it will be possible to determine which of these eight vectors it was before the error. Such eight
vectors can be found manually, one example is shown below:

(000)→ (000000) (010)→ (110011) (011)→ (100101) (110)→ (010110)
(001)→ (001111) (100)→ (111100) (101)→ (011001) (111)→ (101010)

So, if we are able to make a list of six questions, which for every 3-bit state of the chests gives
us corresponding 6-bit answer vector, we will be able to reconstruct the correct answer vector even
if the parrot lies when answering one of the questions.

The questions can easily be constructed by using logical operations. Let us take a look at the
first bit of all answer vectors. It is equal to 1 only in 3rd, 4th, 5th and 8th vectors, corresponding
to chest states (010), (100), (011), (111). So we can ask the first question like this:
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“Is this true that there are treasures only in the second chest or only in the first chest or
only in second and third chests or in all chests?”

The truthful answer to this question will give us the correct first bit of an answer vector. By
constructing other five questions similarly, we can create a mapping described above, and can be
able to decode six answers into 3-bit chest state even if one answer was not honest.

Originally, it was intended that the list of six questions should be presented before asking any
of them. So, all questions are predetermined and do not depend on answers for other questions.
But since this was not explicitly stated in the description of the problem, this condition was not
required. Correct and full solutions to the problem were given by seven participants, most of them
do not use such a “coding theory” approach and present interesting questioning strategies for the
problem. The best solutions were presented by Alexander Grebennikov (Presidential PML 239, St.
Petersburg, Russia) and by Ivan Baksheev (Gymnasium 6, Novosibirsk, Russia).

2.3 Problem “Treasure chests”

2.3.1 Formulation

We have seven closed chests. Some of them contain treasures (diamonds, gold coins, bitcoins as
well) but we do not know which ones. A parrot knows which chests contain treasures and which do
not; he agrees to answer to questions with “yes” or “no”. But he may possibly lie in his answers
but not more than twice. List fifteen questions such that it is possible to deduce from the answers
of the parrot which chests contain treasures and which do not.

2.3.2 Solution

See solution to the problem “Chests with treasure” (section 2.2.2) for the idea of the solution. In
this problem we need to find a code, which maps all binary vectors of length seven (chest states)
to binary vectors of length fifteen and can correct up to two errors. If such a code is found, then
we can easily construct questions using technique described in the solution for the “Chests with
treasure” problem.

It is sufficient to find a [15, 7, 5]-code, where “5” is the minimal distance of the code, since a
code with the minimal distance five or greater can correct two errors. It is known that there exist
BCH (Bose — Chaudhuri — Hocquenghem) codes with these exact parameters (for example, see
[17]). Using one of those, we can construct fifteen questions for the parrot which will allow us to
decode chest states from answers.

Full and correct solutions for the problem were proposed by twelve university students and
professionals. All of them used error correction codes.

2.4 Problem “A numerical rebus”

2.4.1 Formulation

Buratino keeps his Golden Key in a safe that is locked with a numerical password. For secure storage
of the password he replaced some digits in the password by letters (in a way that different letters
substitute different digits). After replacement Buratino got the password NSUCRYPTO17. Alice
the Fox found out that:

• the number NSUCRYPTO is divisible by all integers n, where n < 17, and
• the difference NSU − CRY is divisible by 7.
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Can she find the password?

Remarks. Here we denote ABC . . . (see section 2.1.1) by ABC. . ..

2.4.2 Solution

The main idea of the solution is to apply necessary divisibility rules that would allow us to reduce
the exhaustive search for the original password. Let us describe the main steps of the solution.

1. Since the number NSUCRYPTO is divisible by all integers 1, 2, . . . , 16, it is divisible by
720720. Thus, O is equal to 0.

2. Since NSU − CRY is divisible by 7, PTO is also divisible by 7.
3. Since NSUCRYPTO is divisible by 8, PTO is divisible by 8. Thus, we have that PTO is

equal to 280, 560, or 840.
4. Since O is equal to 0 and NSUCRYPTO is divisible by 9, there is no digit 9 in this number.
5. Then we check all the possible variants, regarding divisibility rules for 11 and 13. Finally, we

find the unique number that is 376215840. So, the password is 37621584017.

The best solution was proposed by Andrei Razvan (“Fratii Buzesti” National College, Craiova,
Romania). He implemented steps 1–3 and searched through the rest of possible numbers using a
computer. While many proposed solutions used exhaustive searches, many students tried to find
this number theoretically and got partial results.

2.5 Problem “Timing attack”

2.5.1 Formulation

Anton invented a ciphermachine that can automatically encrypt messages consisting of English
letters. Each letter corresponds to the number from 1 to 26 by alphabetical order (1 is for A, 2
is for B, ..., 26 is for Z). The machine encrypts messages letter by letter. It encrypts one letter as
follows.

1. If the letter belongs to the special secret set of letters, the machine does not encrypt it, adds
the original letter to the ciphertext, and does not go to step 2; otherwise it goes to step 2.

2. According to the secret rule, it replaces the current letter with number k by a letter with
number `, where ` has the same remainder of division by 7, and adds this new letter to the
ciphertext.

Anton’s classmate Evgeny is interested in different kinds of cryptanalysis that use some physical
information about the encryption process. He measured the amount of time that is required for
each letter encryption by Anton’s ciphermachine and found out that a timing attack can be applied
to it!

He captured the ciphertext that Anton sent to his friend and was able to read the message using
the information of his measurements!

Could you also decrypt the ciphertext

Tois kevy is fhye tvvu xust hgvtoed iyife ngfbey!

Wvat ka rvn knvw owvnt it?

if you know how much time encryption of each message letter took (Figure 1)?
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Figure 1: Time consumption of the message encryption

2.5.2 Solution

First of all one can notice that according to the diagram (Figure 1) an encryption of each letter
took one or two seconds. It leads to an idea that the encryption process takes one second for letters
from secret group (only step 1 is needed) and takes two seconds otherwise (2 steps of encryption).
Thus, one can easily find letters that belong the secret group and partially read the message:

T is e is e t st t e i e e !

W t k w t it?

To read the whole message we just need to write all possible replacements for each of empty
positions according to the step 2 rule and to find the appropriate English words. Note that the
second sentence “Wh
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many participants mentioned this observation. Let us read the first sentence:
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Thus, the message is “This year is more than just another prime number! What do you

know about it?”. Really, the number 2017 has magnificent properties (see [29])! Almost all par-
ticipants solved the problem and found the correct answer. The best ones were given by school stu-
dents Borislav Kirilov (FPMG, Sofia, Bulgaria) and Vladimir Schavelev (SESC NSU, Novosibirsk,
Russia), and by university students Igor Antonov (Ural State University of Railway Transport) and
Kristina Zhuchenko (Demidov Yaroslavl State University).

2.6 Problem “A music lover”

2.6.1 Formulation

As usual Alex listens to music on the way to university. He chooses it applying one secret code to
the second one in his mind (Figure 2). Could you understand what music he is listening to right
now?

Remarks.
1. You should invent a way how to apply one code to another.
2. Some arithmetic operations also can be used.
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Figure 2: Illustration for the problem “A music lover”

2.6.2 Solution

Let us look at Figure 2. The first natural step in solving the problem is to decode the Morse Code
at the top of the picture: STNEKMIHWAY. The decoded string consists of 11 letters as well as the
string AWQBSTCODEA under the table. It brings to the mind that we should apply somehow one
string to another using the information from the table. Note that almost every letter in the table
has an arrow pointing to a sequence of numbers. And among the letters having arrows there are
all the letters of the decoded string STNEKMIHWAY:

S → 3 1 0 T → 1 6 N → 2 3 E → 8 9 8 K → 9 9 7 M → 2 2 6
I → 2 1 1 H → 3 W → 5 A → 0 Y → 3 3

Let us sum the numbers for each letter above! That is to calculate 3+1+0, 1+6, and so on. Thus,
we get the string of eleven integers: 4, 7, 5, 25, 25, 10, 4, 3, 5, 0, 6. Finally, we can apply this string
to the AWQBSTCODEA in the following way: each letter is cyclically shifting right in the alphabet by
the corresponding number of positions from the integer string. We get

letter A W Q B S T C O D E A

shift 4 7 5 25 25 10 4 3 5 0 6
result E D V A R D G R I E G

Thus, we conclude that Alex listens to the music of a great Norwegian composer Edvard Grieg.
The problem appeared to be difficult for the first round: it was completely solved by three

participants. Nevertheless, twelve teams solved the problem during the second round.
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2.7 Problem “The shortest addition chain”

2.7.1 Formulation

In many cryptographic systems we need to calculate the value B = Ac mod p, where A is an
integer, 1 6 A 6 p − 1, c is an arbitrary positive integer, and p is a large prime number. One
possible way of reducing the computational load of calculating is to minimize the total number
of multiplications required to compute the exponentiation. Since the exponent in the equation is
additive, the problem of computing powers of the base element A can also be formulated as an
addition calculation, for which addition chains are used.

An addition chain for an integer n is a sequence of positive integers a0 = 1, a1, . . . , ar−1,
ar = n, where r is a positive integer (that is called the length of the addition chain) and the
following relation holds for all i, 1 6 i 6 r: ai = aj + ak for some k, j such that k 6 j < i.

Find an addition chain of length as small as possible for the value 81, present it as a list of
values and mathematically prove that it can not be shorter!

An example. For the value 15 the shortest additional chain has length 5 and its list of values
is 1, 2, 3, 6, 12, 15. So, to optimally calculate B = A15 mod p, one can use just five multiplications:
A2 = A · A mod p, A3 = A2 · A mod p, A6 = A3 · A3 mod p, A12 = A6 · A6 mod p, A15 = A12 · A3

mod p.

2.7.2 Solution

It is easy to construct an addition chain of length 8 for 81, for example:

1, 2, 4, 8, 16, 32, 64, 80, 81.

There are different ways of proving that a chain of length 7 or shorter does not exist. One way is
making a computer program which will construct all possible addition chains of length 1, ..., 7 and
showing that none of them contains 81. We will provide a theoretical proof.

Let us have an addition chain 1 = a0, a1, a2, . . . , ar of length r. A trivial observation is that ak
cannot be greater than 2k for any k. Thus, an addition chain of length 6 or shorter cannot exist
for number 81, as 81 > 64 = 26. So, we have to prove that an addition chain of length 7 is not
possible either. In order to do that, we prove the following lemma.
Lemma. Let 1 = a0, a1, a2, . . . , ar be an addition chain of length r. Assume that 2r−1 < ar 6 2r.
Then ar = 2r−1 + 2s for some 0 6 s 6 r − 1.
Proof. Let us prove the lemma by induction on r. For r = 1, there is only one addition chain 1, 2,
which satisfies the condition of the lemma. Assume that for all addition chains a0, a1, a2, . . . , at of
length t < r, such that 2t−1 < at 6 2t it holds at = 2t−1 + 2s, where 0 6 s 6 t− 1.

Let 1 = a0, a1, . . . , at+1 be an addition chain of length t + 1 such that 2t < at+1 6 2t+1. By
definition of an addition chain, at+1 = an + am for some indices n,m 6 t. If both an, am are not
greater than 2t−1, then at+1 6 2t−1 + 2t−1 = 2t, that is a contradiction.

Therefore, without loss of generality, an > 2t−1. But that also means n > t− 1. So, n = t and
the chain a0, a1, . . . , at satisfies the induction hypothesis. Therefore, an = at = 2t−1 + 2s for some
s 6 t− 1. Substituting an into the expression for at+1, we obtain

at+1 = 2t−1 + 2s + am

for some m 6 t and s 6 t− 1. Now consider several cases:

• s = t− 1. In this case, an = at = 2t, which forces all ai to be equal to 2i. So, at+1 = 2t + 2m

and the induction step is proven.
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• m = t. In this case, at+1 = 2at = 2t + 2s+1 and the induction step is proven.
• s < t− 1, m = t− 1, am 6 2t−2. In this case, at+1 = 2t−1 +2s +am 6 2t−1 +2t−2 +2t−2 = 2t,

that is a contradiction.
• s < t− 1, m = t− 1, am > 2t−2. Then a0, a1, . . . , at−1 satisfies the induction hypothesis, and
am = 2t−2 + 2q, q 6 t− 2. Thus, at+1 = 2t−1 + 2s + 2t−2 + 2q.
— If q = t− 2, then at+1 = 2t + 2s, and the induction step is proven.
— If s = t− 2, then at+1 = 2t + 2q, and the induction step is proven.
— If q < t− 2 and s < t− 2, then at+1 6 2t, which is a contradiction.
• s < t− 1, m < t− 1. Then am 6 2t−2, and at+1 6 2t−1 + 2t−2 + 2t−2 = 2t, which is a

contradiction.

We considered all cases and checked that some of them contradict the lemma assumption, while
others lead to the proven induction step. Thus, the lemma holds.

Now assume that there is an addition chain of length 7 for 81. Because 81 > 64 = 26, such a
chain would satisfy the condition of the lemma, and then 81 = a7 = 64 + 2s for some s 6 6. This
is impossible. So, the shortest addition chain for 81 has length 8.

This is a rather general solution, which also provides an interesting fact about addition chains.
Just four school students completely solved the problem, the best solution was provided by Alexan-
der Dorokhin (Presidential PML 239, St. Petersburg, Russia). Usually, proofs of impossibility of
a chain of length 7 were given in a more straightforward manner, checking possible strategies of
getting to number 81 in 7 steps and showing that no matter how we add numbers, we will not be
able to get 81.

2.8 Problem “An infinite set of collisions”

2.8.1 Formulation

Bob is very interested in blockchain technology, so he decided to create his own system. He started
with the construction of a hash function. His first idea for a hash function was the function H with
a hash value of length 16.

It works as follows.

• Let u1, u2, . . . , un ∈ F2 be a data representation, n is arbitrary.
• Bob calculates z0, . . . , zn ∈ F32

2 , z0 = (0, . . . , 0), and zi+1 is obtained from zi in the following
way:

z′ =

{
(zi1, z

i
2, . . . , z

i
16, z

i
1 ⊕ zi17, zi2 ⊕ zi18 . . . , zi16 ⊕ zi32) if ui = 1,

(zi1 ⊕ zi17, zi2 ⊕ zi18, . . . , zi16 ⊕ zi32, zi17, zi18, . . . , zi32) if ui = 0,

z′′ =

{
z′ if ui 6= z′32,

(z′1 ⊕ 1, z′2 ⊕ 1, . . . , z′32 ⊕ 1) if ui = z′32,

zi+1 = (z′′2 , z
′′
3 , . . . , z

′′
32, ui).

• Finally, H(u1, . . . , un) = (zn1 ⊕ zn17, zn2 ⊕ zn18, . . . , zn16 ⊕ zn32).

But then Bob found out that his hash function is weak for using in cryptographic applications.
Prove that Bob was right by constructing an infinite set C ⊂

⋃∞
n=1 Fn

2 such that all elements of C
have the same hash value H.

An example. Let us calculate H(0, 1, 0). We have
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z1 = (1, 1, . . . , 1︸ ︷︷ ︸
31

, 0), z2 = (0, . . . , 0︸ ︷︷ ︸
15

, 1, . . . , 1︸ ︷︷ ︸
15

, 0, 1), z3 = (1, . . . , 1︸ ︷︷ ︸
13

, 0, 0, 1, . . . , 1︸ ︷︷ ︸
14

, 0, 1, 0).

Thus, H(0, 1, 0) = (0, . . . , 0︸ ︷︷ ︸
14

, 1, 1).

2.8.2 Solution

Here we provide the solution proposed by Alexey Udovenko (University of Luxemburg). It consists
of a theoretical proof and a simple example. Exactly the same idea was suggested by the program
committee.

A theoretical proof. Let us consider an arbitrary infinite sequence u = u1, u2, u3, . . . and the
following hash values:

H(u1), H(u1, u2), H(u1, u2, u3), . . .

To obtain an infinite set of collisions, it is enough to find some `,m, such that z` = zm. Then we
reconstruct the sequence in the following way: uk = uk−|m−`| starting with k = max{`,m} + 1.
By this method we obtain a cycle in the sequence of the states z1, z2, z3, . . ., since each state zi

uniquely defines H(u1, . . . , ui) and the next state zi+1 in conjunction with ui+1. The cycle length
divides 232!, since it is between 1 and |F32

2 | = 232. The initial state z0 may not belong to the cycle,
but after 232 steps z2

32
definitely belongs to the cycle. It means that

H(u1, . . . , u232) = H(u1, . . . , u232+1·232!) = H(u1, . . . , u232+2·232!) = . . .

An example. Let us consider the zero sequence u = 0, 0, 0, . . .. In this case

z31 = (0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)

and z32 = z31. Thus, H(u1, . . . , uk) = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0) for any k > 31.
The problem was completely solved by twelve university students and professionals.

2.9 Problem “One more parameter”

2.9.1 Formulation

There are several parameters in cryptanalysis of block ciphers that are used to measure the diffusion
strength. In this problem, we study properties of one of them.

Let n, m be positive integers. Let a = (a1, . . . , am) be a vector with coordinates ai taken from
the finite field F2. Denote the number of nonzero coordinates ai, i = 1, . . . ,m, by wt(a) and call
this number the weight of the vector a. The inner product of a = (a1, . . . , am) and b = (b1, . . . , bm)
in Fm

2 is defined as a · b = a1b1 ⊕ . . . ⊕ ambm. For a Boolean function f : Fm
2 → F2, we define the

function weight, wt, as follows: wt(f) = |{a ∈ Fm
2 | f(a) = 1}|.

The special parameter Q of a vectorial Boolean function ϕ : Fm
2 → Fm

2 is defined to be

Q(ϕ) = min
a, b, b 6=0,wt(a·x⊕b·ϕ(x))6=2m−1

{wt(a) + wt(b)}.

• Rewrite (simplify) the definition of Q(ϕ) when the function ϕ is linear (recall that a function
` is linear if `(x⊕ y) = `(x)⊕ `(y) for any x, y).
• Rewrite the definition of Q(ϕ) in terms of linear codes, when the linear function ϕ is given

by an m×m matrix M over F2, i. e. ϕ(x) = Mx.
• Find the tight upper bound for Q(ϕ) as a function of m.
• Can you give an example of the function ϕ with the maximal possible value of Q?
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2.9.2 Solution

A special parameter Q considered in the problem is called the linear branch number of a transfor-
mation [11]. This problem is a linear cryptanalysis equivalent of the problem “A special parameter”
of NSUCRYPTO’2014 [2], where the differential branch number was discussed.

Let ϕ be a vectorial Boolean function Fm
2 → Fm

2 .
• If ϕ is a linear function, then the Boolean function a ·x⊕ b ·ϕ(x) is also linear for any vectors

a, b ∈ Fm
2 . Hence, the condition wt(a · x⊕ b · ϕ(x)) 6= 2m−1 is equivalent to a · x⊕ b · ϕ(x) = 0 for

all x ∈ Fm
2 . Thus, for the considered case we have the definition

Q(ϕ) = min
a, b, b 6=0, a·x⊕b·ϕ(x)≡0

{wt(a) + wt(b)}.

• Let us consider vectors as columns. In the case when ϕ(x) = Mx for some m×m matrix M
over the field F2 we can rewrite a · x ⊕ b · ϕ(x) = (a ⊕MT b) · x. Then, (a ⊕MT b) · x ≡ 0 implies
a⊕MT b = 0 or Hc = 0, where H = (I|MT ) is a m× 2m matrix, I is the identity m×m matrix,
and c = (a, b) denotes the concatenation of vectors a and b of length 2m. Note, that b = 0 and
a = MT b imply a = 0. So, b 6= 0 is equivalent to c 6= 0. Thus,

Q(ϕ) = min
c 6=0, Hc=0

{wt(c)} = dist(C),

where C is the linear code of length 2m and dimension m with a parity-check matrix H, dist(C)
denotes the distance of the code C.
• Here we would like to apologize to the participants since the formulation of the problem was

not correctly stated. If we consider a mapping ϕ : Fm
2n → Fm

2n instead of ϕ : Fm
2 → Fm

2 , then one
can easily find the bound Q(ϕ) 6 m+ 1, and this bound is tight for various parameters n and m.
Indeed, there exist Maximal Distance Separable codes with parameters [2m,m,m+1] over F2n (for
example, Reed–Solomon codes).

At the same time, for ϕ : Fm
2 → Fm

2 as it was given in the problem, the bound Q(ϕ) 6 m + 1
can be achieved only when m = 1. So, we cannot say that this bound is tight for various m. So,
this bound cannot be considered as a correct answer.

To be honest, we could not say what is the correct answer to this problem, and so, we may
assume that this problem is also one of the open problems of the Olympiad. What was surprising
and very pleasant for us is that several teams found nontrivial bounds for general and linear cases.
But unfortunately, they could not say if these bound are tight. We would like to shortly present
the main results of the participants.

The linear case: Q(ϕ) 6 (2m + 4)/3. This bound was found by Irina Slonkina (National
Research Nuclear University MEPhI).

Let us consider any m×m matrix S over the field F2 and a linear function ϕs(x) = Sx. So,

Q(ϕs) = min
b6=0
{wt(bS) + wt(b)}.

It is clear that for any i, j ∈ {1, 2, ...,m}, i 6= j, the following bounds hold:

Q(ϕs) 6 wt(Si) + 1 and Q(ϕs) 6 wt(Si ⊕ Sj) + 2,

where Si, Sj ∈ Fm
2 are i-th and j-th rows of the matrix S. Then it holds

Q(ϕs)− 2 6 wt(Si ⊕ Sj) 6 2m− wt(Si)− wt(Sj) 6

6 2m− (Q(ϕs)− 1)− (Q(ϕs)− 1) = 2m− 2Q(ϕs) + 2.
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where the second bound follows from the inequality wt(u⊕ v) 6 2m−wt(u)−wt(v) that holds for
any u, v ∈ Fm

2 . Thus, for the function ϕs we have the bound Q(ϕs) 6 (2m+ 4)/3.

The general case: if m > 2, then Q (ϕ) 6 m.
This bound was found by Alexey Miloserdov, Saveliy Skresanov, and Nikita Odinokih team

(Novosibirsk State University) and by Kristina Geut and Sergey Titov team (Ural State University
of Railway Transport). Here, we present the solution of the first team.

Let f : Fn
2 → F2. The Walsh transform of f is defined as Wf (y) =

∑
x∈Fn

2

(−1)y·x⊕f(x), y ∈ Fn
2 .

The function f is uniquely defined by its Walsh coefficients since the following equality holds:

(−1)f(x) =
1

2n

∑
y∈Fn

2

Wf (y)(−1)y·x, x ∈ Fn
2 .

It is also well known that Parseval’s equality,
∑

y∈Fn
2

W 2
f (y) = 22n, holds for any Boolean function f .

Proposition. Let f : Fn
2 → F2. Suppose that for every a ∈ Fn

2 such that 0 6 wt(a) 6 n − 1 it
holds that wt(a · x⊕ f(x)) = 2n−1. Then f(x) = x1 ⊕ x2 ⊕ . . .⊕ xn ⊕ c for some c ∈ F2.

Proof. Since a function a · x⊕ f(x) is balanced iff Wf (a) = 0, then by Parseval’s equality and the
assumption of the proposition we have Wf (a) = 0 for all a ∈ Fn

2 such that 0 6 wt(a) 6 n− 1 and
|Wf (1)| = 2n, where 1 = (1, 1, . . . , 1) ∈ Fn

2 . In this case it holds (−1)f(x) = ±2n
2n (−1)1·x, x ∈ Fn

2 ,
i. e. f(x) = x1 ⊕ x2 ⊕ . . .⊕ xn ⊕ c, for some c ∈ F2.

Corollary. Qmax(m) 6 m for m > 2, where Qmax(m) = max
ϕ:Fm

2 →Fm
2

Q(ϕ).

Proof. Denote b1 = (1, 0, 0, . . . , 0) ∈ Fm
2 , b2 = (0, 1, 0, . . . , 0) ∈ Fm

2 . Assume that there exists some
ϕ such that Q(ϕ) > m. It implies wt(a · x ⊕ bi · ϕ(x)) = 2m−1, i = 1, 2, for any constant a ∈ Fm

2

such that 0 6 wt(a) 6 m − 1. Then by the Proposition it holds bi · ϕ(x) = 1 · x ⊕ ci, for some
ci ∈ F2, i = 1, 2. Thus, the sum modulo 2 of the first and the second coordinate functions of ϕ is a
constant function. Hence, wt(b ·ϕ(x)) ∈ {0, 2m}, where b = (1, 1, 0, . . . , 0) ∈ Fm

2 . But then we have
Q(ϕ) 6 2, that is a contradiction.

2.10 Problem “Scientists”

2.10.1 Formulation

Two young cryptographers and very curious students Alice and Bob studied different cryptosystems
and attacks on them. At the same time they were very interested in biographies of famous scientists
and found out one interesting property that can be used in cryptosystems. They choose three
pairs of scientists:

Charles Darwin and Michael Faraday,
Werner Heisenberg and Johannes Kepler,

Hans Christian Orsted and Mikhail Lomonosov.

Alice and Bob choose a cryptosystem and an attack they would like to study. They constructed
three sets of parameters for the cryptosystem: one set according to each pair of scientists. Then
Alice chooses a phrase consisting of 18 English letters (spaces were omitted) and divided it into
three parts of 6 letters. She represented each part as a hexadecimal number using ASCII code.
Alice encrypted the first part by the cryptosystem for each set of parameters, then the same actions
she made for the second and the third parts. Finally, Alice got the following three groups of three
ciphertexts (in hexadecimal notation):
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Part 1 Part 2 Part 3
Set of parameters 1 2512 1F5A 0079 B494 222D 3E1C 275E B751 4FDB

Set of parameters 2 3D0D 6812 0443 5111 5BFD 9398 0815 6223 2698

Set of parameters 3 1EDC 4856 8CE2 9C18 2A32 B9AB 9A1C AD5C 25D7

and asked Bob to decrypt it using the attack! Bob successfully read the secret phrase. Could you

• find the property like Alice and Bob,
• understand what is the cryptosystem and the attack chosen,
• decrypt the ciphertext by applying this attack?

*What word should be added at the beginning of the decrypted text according to the famous
words of Mikhail Lomonosov?

2.10.2 Solution

The problem is related to the RSA cryptosystem [20] and the broadcast attack due to Hastad [15].
Given pairs of famous scientists, some participants made a correct guess that each of the pairs is
linked to some prime numbers P , Q, and the RSA modulus N = PQ. But what is the way to
obtain the prime numbers?! Success in their search depends only on one’s intuition. Writing down
the birth date of each of the scientists in the form DDMMYYYY, one can notice that all these 7-
or 8-decimal numbers are prime:

P1 = 12021809 and Q1 = 22091791,
P2 = 5121901 and Q2 = 27121571,
P3 = 14081777 and Q3 = 19111711.

This is the property Alice and Bob found out from biographies of the scientists.
Since Alice encrypted each part of the original text thrice, in order to decrypt it we can try to

apply Hastad’s broadcast attack on RSA as it is described in [6]. Three pairs of parameters should
indicate that e = 3 was chosen as the public exponent. This is not a good decision of Alice and
Bob. A valid public exponent must be coprime with ϕ(N), since that makes it possible to compute
the private exponent. Whereas 3 divides either of ϕ(N1), ϕ(N2), or ϕ(N3). Two solutions noted
this weird choice and both of them are marked as the best solutions.

Nevertheless, it is still reasonable to use Chinese Remainder Theorem and take the cubic root.
In other words, applying Hastad’s broadcast attack we obtain three parts of the message encrypted.
Converting them back to ASCII characters we get the plaintext PUTSTHEMINDINORDER, which means
PUTS THE MIND IN ORDER. This is a part of the famous phrase by a distinguished Russian scientist
Mikhail Lomonosov, who said that “Mathematics should be studied because it puts the mind in
order”. Consequently, the first word of the quote is “mathematics”.

The participants presented two comprehensive solutions at the first round and seven yet at the
second round. One more solution turned to be almost complete: authors pointed a wrong word as
the beginning of the Lomonosov statement. The best solutions were proposed by Daniel Malinowski
and Michal Kowalczyk team (University of Warsaw, Dragon Sector) and by Alexey Ripinen, Oleg
Smirnov, and Peter Razumovsky team (Saratov State University).

2.11 Problem “Masking”

2.11.1 Formulation

It is known that there are attacks on cryptosystems that use information obtained from the physical
implementation of a cryptosystem, for example, timing information, power consumption, electro-
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magnetic leaks or even sound. To protect cryptosystems from such attacks cryptographers can use
a countermeasure known as masking.

Correlation immune Boolean functions can reduce the masking cost. Therefore, we need to
search for Boolean functions satisfying the following conditions: they should have small Hamming
weight, for implementation reasons, and high correlation immunity to resist an attacker with
multiple probes.

Let f be a non-constant Boolean function in 12 variables of correlation immunity equal to 6.

• What is the lowest possible Hamming weight k of f?
• Give an example of such a function f with Hamming weight k.

Remarks.
1. Hamming weight wt(f) of a Boolean function f in n variables is the number of vectors x ∈ Fn

2

such that f(x) = 1.
2. A Boolean function f in n variables is called correlation immune of order t, where t is an

integer such that 1 6 t 6 n, if wt(fa1,...,ati1,...,it
) = wt(f)/2t for any set of indexes 1 6 i1 < . . . < it 6 n

and any set of values a1, . . . , at ∈ F2. Here fa1,...,ati1,...,it
denotes the subfunction of f in n− t variables

that is obtained from f(x1, . . . , xn) by fixing each variable xik by the value ak, 1 6 k 6 t.

2.11.2 Solution

Firstly, we should note that this problem contains open questions in general. We considered the
participants’ solutions as correct if they are as deep as solutions known to the Olympiad program
committee. More precisely, we expected from the participants Boolean functions in 12 variables of
weight 1024 that are correlation immune of order 6.

Let f be a non-constant Boolean function in n variables of correlation immunity t and of
Hamming weight k. The known open problem is to find such a function f having as low as possible
Hamming weight for various n and t. The problem questions were investigated in [4, 19], where
minimal Hamming weight k = 1024 of f for n = 12 and t = 6 was found using heuristics (more
precisely, evolutionary algorithms). Theoretically, k can be lower than 1 024 but it is unknown any
example of such a function. It can be equal to any value of the form k = 64` greater than or equal
to 768 according to the results on orthogonal arrays [16]. It is known that the elements of the
support of f form the rows of an orthogonal array with parameters (k, n, 2, t) (recall that x ∈ Fn

2

belongs to the support of f if f(x) = 1).
We present several constructions of f proposed by the participants.
1) The first compact example was obtained by Maxim Plushkin, Ivan Lozinskiy, and Azamat

Miftakhov team (Lomonosov Moscow State University). They found the following function:

f(x1, . . . , x12) = (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ 1)(x6 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ 1).

Note that the team studied the problem for a small number of variables n up to 14 and corre-
lation immunity t = n/2. For example, they found a function in 10 variables with the Hamming
weight k = 256 constructed similarly to the case of 12 variables:

f(x1, . . . , x10) = (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ 1)(x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ 1).

And as proved in [4] this weight cannot be lower.
2) Another solution was found by Alexey Udovenko (University of Luxembourg) in the following

way:
f(x1, . . . , x12) = s1 ⊕ s1s2 ⊕ s1s3 ⊕ s2s3,
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where s1 = x1 ⊕ x2 ⊕ x3 ⊕ x4, s2 = x5 ⊕ x6 ⊕ x7 ⊕ x8, s3 = x9 ⊕ x10 ⊕ x11 ⊕ x12.
Alexey also mentioned that in the case of quadratic function in 12 variables the Hamming weight

cannot be less than 1024 (Proposition 1.9 [8]). Note that he concentrated his search on quadratic
functions whose graphs of quadratic terms have multiple automorphisms. This idea was supported
by studying the graph of quadratic terms of a function f with parameters n = 6, t = 3 and k = 16.
Alexey computationally proved that in this case 16 is the minimal Hamming weight of f .

3) The third interesting example was proposed by Anna Taranenko (Sobolev Institute of Math-
ematics) and can be described as follows:

f(x1, . . . , x12) = 1⇔ ϕ(x1, x2, x3) + ϕ(x4, x5, x6) + ϕ(x7, x8, x9) + ϕ(x10, x11, x12) = 0,

where + denotes the addition in Z4 and ϕ takes the following values:

ϕ(0, 0, 0) = ϕ(1, 1, 1) = 0; ϕ(1, 0, 0) = ϕ(0, 1, 1) = 1;
ϕ(0, 1, 0) = ϕ(1, 0, 1) = 2; ϕ(0, 0, 1) = ϕ(1, 1, 0) = 3.

Anna presented a mathematical proof that the function f is correlation immune of order 7 (and
therefore 6) with the Hamming weight 1024. She also mentioned that for a 12-variables function of
correlation immunity 7 the minimal Hamming weight is exactly 1024 according to the Bierbrauer —
Friedman inequality for parameters of orthogonal arrays [5, 12].

Over all, only these three teams mentioned above made significant progress with this problem.

2.12 Problem “TwinPeaks”

2.12.1 Formulation

On Bob’s smartphone there is a program that encrypts messages with the algorithm TwinPeaks.
It works as follows:

1. It takes an input message P that is a hexadecimal string of length 32 and represents it as a
binary word X of length 128.

2. Then X is divided into four 32-bits words a, b, c, d.
3. Then six rounds of the following transformation are applied:

(a, b, c, d)←
(
a+ c+ S(c+ d), a+ b+ d+ S(c+ d), a+ c+ d, b+ d+ S(c+ d)

)
,

where S is a secret permutation from F32
2 to itself and + denotes the coordinate-wise sum

modulo 2.
4. The word Y is obtained as a concatenation of a, b, c, d.
5. Finally, Y is converted to the hexadecimal string C of length 32. The algorithm gives C as

the ciphertext for P .

Agent Cooper intercepted the ciphertext C = 59A0D027D032B394A0A47A9ED19C98A8 sent from
Bob to Alice and decided to decrypt it.

In order to solve this problem agent Cooper also captured Bob’s smartphone with the TwinPeaks
algorithm! Here it is. Now Cooper (and you too) can encrypt any messages with TwinPeaks but
still can not decrypt any one.

Help Cooper to decrypt C.
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2.12.2 Solution

Let F be the round transformation of TwinPeaks:

F (a, b, c, d) = (a+ c+ S(c+ d), a+ b+ d+ S(c+ d), a+ c+ d, b+ d+ S(c+ d))

and
f(a, b, c, d) = (c+ d, a+ b+ c, a+ b, b+ c+ d).

If F transforms a message (a, b, c, d) to (a′, b′, c′, d′), then G tranforms a message f(a, b, c, d)
to f(a′, b′, c′, d′), where G acts as follows:

G(a, b, c, d) = (b+ S(a), c, d, a).

This conclusion can be extended to all six rounds. It will be convenient to consider a modification
of TwinPeaks, where F is replaced by G. Indeed, one can encrypt a message (x1, x2, x3, x4), where
xi ∈ F32

2 , using the modified algorithm in the following way:

1. Encrypt f−1(x1, x2, x3, x4) = (x1 + x3 + x4, x1 + x4, x2 + x3, x1 + x2 + x3) with TwinPeaks.
2. Transform the encryption result using f .

Figure 3 illustrates the modified TwinPeaks. As one can see,

Figure 3: Modified TwinPeaks

plaintexts and ciphertexts are linked with the following relations:

y1 = x3 + S(x2 + S(x1)) + S(y4),

y2 = x4 + S(x3 + S(x2 + S(x1))),

y3 = x1 + S(y2),

y4 = x2 + S(x1) + S(y3).

Cooper can choose as x1 any value u and get its representation
in the form u = v + S(w), where v = y3, w = y2. Moreover,
Cooper can represent w in the form v′ + S(w′) and finally get a
representation

u = v + S(v′ + S(w′)).

Suppose that Cooper wants to find x1. Then he represents

y2 = v + S(v′ + S(w′))

(2 requests to TwinPeaks) and encrypts (w′, v′, v, y3) (1 request). The second word of the ciphertext
obtained is

y3 + S(v + S(v′ + S(w′))) = y3 + S(y2) = x1.

Since Cooper is able to find x1 given (y1, y2, y3, y4), he can calculate S(u) for all u. Indeed,
Cooper can choose y2 = u and arbitrary y1, y3, y4. Then he finds x1 and S(u) = x1 + y3. It can be
done using 3 requests.

Using 6 requests Cooper can find S(x1)+S(y3) and, hence, x2. Another 6 requests is enough to
find S(x2 + S(x1)) + S(y4) and, hence, x3. Finally, using 3 request he finds S(x3 + S(x2 + S(x1)))
and, hence, x4.

Thus, one needs 3 + 6 + 6 + 3 = 18 requests to decrypt the message.
The answer is 43ABECCAA53CB953F35239E79CC900EE.
Correct solutions were proposed by twenty teams of university students and professionals. All

of them used different methods and techniques. We did not identify a single best but we are pleased
to note the participants professionalism and creativity in solving the problem.
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2.13 Problem “An addition chain”

2.13.1 Formulation

In many cryptographic systems we need to calculate the value B = Ac mod p, where A is an integer,
1 6 A 6 p−1, c is an arbitrary positive integer, and p is a large prime number. One possible way of
reducing the computational load of calculating is to minimize the total number of multiplications
required to compute the exponentiation. Since the exponent in equation is additive, the problem
of computing powers of the base element A can also be formulated as an addition calculation, for
which addition chains are used.

An addition chain for an integer n is a sequence of positive integers a0 = 1, a1, . . . , ar−1,
ar = n, where r is a positive integer (that is called the length of the addition chain) and the
following relation holds for all i, 1 6 i 6 r: ai = aj + ak for some k, j such that k 6 j < i.

Find an addition chain of length as small as possible for the value 2127 − 3.
The solution should be submitted as a list of values occurring in the chain and a description

of how you found the solution. An example of the shortest addition chain for the value 15 can be
found in section 2.7.1.

2.13.2 Solution

We should note that the problem contains open questions in general. We considered the par-
ticipants’ solutions as correct if they are as deep as solutions known to the Olympiad program
committee. More precisely, if the participants could find an addition chain of length 136.

We would like to follow the solution proposed by Alexey Miloserdov, Saveliy Skresanov, and
Nikita Odinokih team (Novosibirsk State University). Denote by `(n) the length of the smallest
addition chain for a number n. Let us first prove that `(2127 − 3) 6 136 and present a chain of
length 136. Then we will consider several lower bounds for `(2127 − 3).

It is easy to see that
2127 − 3 = 4(2125 − 1) + 1.

We have two inequalities for any n,m > 11: `(n+ 1) 6 `(n) + 1 and `(nm) 6 `(n) + `(m). So, we
can conclude that `(2127 − 3) 6 `(2125 − 1) + 3, since `(4) = 2.

An addition chain a0 = 1, a1, . . . , ar−1, ar = n is called a star chain for n if for each 1 6 i 6 r
there exists 0 6 j < i such that ai = ai−1 + aj . Denote by `∗(n) the length of the shortest
star chain for the number n. It is easy to see `(n) 6 `∗(n). The following inequality holds
by the famous Brauer’s theorem [7]: `(2m − 1) 6 m − 1 + `∗(m) for any m > 1. The chain
1, 2, 3, 5, 10, 20, 25, 50, 100, 125 is a star chain for 125 of length 9. It is known [27] that `(125) = 9.
So, the chain for 125 found above is the shortest one. Thus,

`(2127 − 3) 6 125− 1 + 9 + 3 = 136.

A required chain of length 136 for 2127 − 3 is presented in Table 3.
There also exist several lower bounds which participants referred to.
1) First of all, one could notice that addition chains of length less than 127 cannot produce

numbers greater than 2126. So, we have `(2127 − 3) > 126.
2) A more strict bound `(2127 − 3) > 132 comes from Schönhage’s theorem [22]:

`(n) > log2(n)− log2(s(n))− 2.13,

where s(n) denotes the sum of the digits in the binary expansion of n.
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Table 3: An addition chain of length 136 for 2127 − 3.
1, 2, 4, 8, 12, 24, 48, 60, 120, 124, 248, 496, 992, 1984, 3968, 4092, 8184, 16368, 32736, 65472, 130944, 261888, 523776, 1047552,
2095104, 4190208, 4194300, 8388600, 16777200, 33554400, 67108800, 134217600, 134217724, 268435448, 536870896, 1073741792,
2147483584, 4294967168, 8589934336, 17179868672, 34359737344, 68719474688, 137438949376, 274877898752, 549755797504,
1099511595008, 2199023190016, 4398046380032, 8796092760064, 17592185520128, 35184371040256, 70368742080512,
140737484161024, 281474968322048, 562949936644096, 1125899873288192, 2251799746576384, 4503599493152768, 4503599627370492,
9007199254740984, 18014398509481968, 36028797018963936, 72057594037927872, 144115188075855744, 288230376151711488,
576460752303422976, 1152921504606845952, 2305843009213691904, 4611686018427383808, 9223372036854767616,
18446744073709535232, 36893488147419070464, 73786976294838140928, 147573952589676281856, 295147905179352563712,
590295810358705127424, 1180591620717410254848, 2361183241434820509696, 4722366482869641019392, 9444732965739282038784,
18889465931478564077568, 37778931862957128155136, 75557863725914256310272, 151115727451828512620544,
302231454903657025241088, 604462909807314050482176, 1208925819614628100964352, 2417851639229256201928704,
4835703278458512403857408, 9671406556917024807714816, 19342813113834049615429632, 38685626227668099230859264,
77371252455336198461718528, 154742504910672396923437056, 309485009821344793846874112, 618970019642689587693748224,
1237940039285379175387496448, 2475880078570758350774992896, 4951760157141516701549985792, 9903520314283033403099971584,
19807040628566066806199943168, 39614081257132133612399886336, 79228162514264267224799772672,
158456325028528534449599545344, 316912650057057068899199090688, 633825300114114137798398181376,
1267650600228228275596796362752, 2535301200456456551193592725504, 5070602400912913102387185451008,
5070602400912917605986812821500, 10141204801825835211973625643000, 20282409603651670423947251286000,
40564819207303340847894502572000, 81129638414606681695789005144000, 162259276829213363391578010288000,
324518553658426726783156020576000, 649037107316853453566312041152000, 1298074214633706907132624082304000,
2596148429267413814265248164608000, 5192296858534827628530496329216000, 10384593717069655257060992658432000,
20769187434139310514121985316864000, 41538374868278621028243970633728000, 83076749736557242056487941267456000,
166153499473114484112975882534912000, 332306998946228968225951765069824000, 664613997892457936451903530139648000,
1329227995784915872903807060279296000, 2658455991569831745807614120558592000, 5316911983139663491615228241117184000,
10633823966279326983230456482234368000, 21267647932558653966460912964468736000, 42535295865117307932921825928937472000,
85070591730234615865843651857874944000, 170141183460469231731687303715749888000,
170141183460469231731687303715884105724, 170141183460469231731687303715884105725.

3) Also, there is the famous Scholz — Brauer conjecture [23]: `(2n − 1) 6 n− 1 + `(n) for any
n > 1. Moreover, for all n 6 64 the inequality becomes the equality as shown in [10]. If we suppose
that the conjecture is true and the equality always holds, then it can be assumed that `(2127−1) =
127 − 1 + 10 = 136 since `(127) = 10 [27]. Then, it is easy to see `(2127 − 1) 6 `(2127 − 3) + 1.
Thus, we have that `(2127 − 3) > 135, that is quite close to the shortest found length 136.

At the end, thirteen teams in the second round were able to find addition chains of length 136
using different approaches, eight team presented chains of length 137 and 138.

2.14 Problem “Hash function FNV2”

2.14.1 Formulation

The FNV2 hash function is derived from the function FNV-1a [28]. FNV2 processes a message x
composed of bytes x1, x2, . . . , xn ∈ {0, 1, . . . , 255} in the following way:

1. h← h0;
2. for i = 1, 2, . . . , n: h← (h+ xi)g mod 2128;
3. return h.

Here h0 = 144066263297769815596495629667062367629 and g = 288 + 315.

Find a collision, that is, two different messages x and x′ such that FNV2(x) = FNV2(x′). Collisions
on short messages and collisions that are obtained without intensive calculations are welcomed.
Supply your answer as a pair of two hexadecimal strings which encode bytes of colliding messages.

2.14.2 Solution

We provide a solution based on the Lenstra — Lenstra — Lovász (LLL) algorithm. This idea was
proposed by several teams.

Firstly, it is clear that

FNV2(x1x2 . . . xn) = (h0g
n + x1g

n + x2g
n−1 + . . .+ xng) mod 2128.
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Next, it is sufficient to solve the equation

z1g
n−1 + z2g

n−2 + . . .+ zng
0 ≡ 0 (mod 2128)

in z1, z2, . . . , zn ∈ {−255, . . . , 255} not equal to zero simultaneously. Indeed, zi = xi − yi for some
xi, yi ∈ {0, . . . , 255} and

FNV2(x1, x2, . . . , xn)− FNV2(y1, y2, . . . , yn) = g(z1g
n−1 + z2g

n−2 + . . .+ zng
0) ≡ 0 (mod 2128).

The purpose is to construct a polynomial such that g is its root. Let us define integer vectors
e0, . . . , en of length n+ 1 in the following way:

e0 = (0, . . . , 0︸ ︷︷ ︸
n

, t · 2128), where t is a small integer,

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

, gn−i mod 2128), where i ∈ {1, . . . , n}.

Let us add some z0 to z1, . . . , zn and consider the linear combination

`z = z0e
0 + . . .+ zne

n = (z1, . . . , zn, z0t2
128 + z1g

n−1 + z2g
n−2 + . . .+ zng

0).

To solve the problem it is sufficient to find a linear combination `z with z1, . . . , zn ∈ {−255, . . . , 255}
and zero last coordinate. This can be done using the LLL algorithm. It is a lattice reduction algo-
rithm that can find a short nearly orthogonal basis of 〈e0, . . . , en〉. Obtaining such an LLL-reduced
basis, we check if it contains a vector `z with desired properties. According to the participants’
results, this approach works well starting from n = 17.

The problem was completely solved by five teams while five more teams provide collisions on
long messages. Table 4 contains some collisions proposed by the participants.

Table 4: Collisions of FNV2.
Message 1 Message 2

808080808080808080808080808080808080 a55eca84915f926b4a5f8146c78d8a75d893

8080808080808080808080808080808080 c07b375db56d8aceac504381d06696389f

8c2565b0f35411600c3c0e20e21235 cb6163c5f3

“∼∼∼∼ NSU CRYPTO IS FUN! ∼∼∼∼” 82857b83274c57531e44524e49564b175351273f48572a1c79807c7a

2.15 Problem “The image set” (unsolved)

2.15.1 Formulation

Let F2 be the finite field with two elements and n be any positive integer. Let g(X) be an irreducible
polynomial of degree n over F2. It is widely known that the set of equivalence classes of polynomials
over F2 modulo g(X) is a finite field of order 2n; we denote it by F2n .

Characterize in a non-straightforward way the image set (depending on n) of the function F
over Fn

2 defined as follows:
F (x) = x3 + x.

That is, characterize in a way which brings additional information, for instance on its algebraic
structure.
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An example. For n = 3 we can take g(X) = X3 + X + 1, then each element of the field
F23 can be written as a polynomial of degree at most 2: a0 + a1X + a2X

2, with a0, a1, a2 ∈ F2.
We can calculate the table of multiplication in F23 modulo g(X), while the table of addition just
corresponds to adding polynomials over F2. For example,

(1 +X +X2) + (X +X2) = 1,

(X +X2)(1 +X2) = X +X2 +X3 +X4 = 1 +X (mod g(X)).

Now we can calculate all the elements of the image set of F (x). Indeed,

{F (x) | x ∈ F23} = {0, 1, 1 +X, 1 +X2, 1 +X +X2}.

Then we note that it is the union of {0} and of the affine plane 1 + {0, X,X2, X + X2}. In our
case it is a desirable algebraic structure of this set.

You need to study this problem for an arbitrary n (or some partial cases).

Remarks. Functions over the finite field of order 2n are of great interest for using in cryp-
tographic applications, for example, as S-boxes. For instance, AES S-box is based on the inverse
function over F28 . But in fact, there are many open problems in fields of finding new constructions
and descriptions of cryptographically significant functions!

2.15.2 Solution

There were no complete solutions for this problem. Some participants proposed nice ideas. Unfor-
tunately, no one could push them far enough to get significant results. Some did not understand
what we were looking for (they focused on the number of solutions, which is known from Mullen
et al [18]).

The best solution attempts were proposed by Alexey Udovenko (University of Luxembourg)
and by Nikolay Altukhov, Roman Chistiakov, and Evgeniy Manaka team (Bauman Moscow State
Technical University). The first solution characterized the case of one pre-image (which is classical),
showed a property by the algebraic degree (which gives weak insight on the structure, but it was a
nice idea) and finished with observations which are nice but not specific. The second one had an
idea of using gcd and tried to calculate it, but did not complete it.

We would also like to recall a known result which may be useful for solving the problem.

Theorem. [25] Let t1, t2 denote the roots of t2 + bt+ a3 = 0 in F22n , where a ∈ F2n , b ∈ F∗2n . Then
the factorization of f(x) = x3 + ax+ b over F2n is characterized as follows:

• f has three zeros in F2n if and only if trn

(
a3

b2
+ 1
)

= 0, where trn is the absolute trace function,

and t1, t2 are cubes in F2n (n even), F22n (n odd).

• f has exactly one zero in F2n if and only if trn

(
a3

b2
+ 1
)

= 1.

• f has no zero in F2n if and only if trn

(
a3

b2
+ 1
)

= 0 and t1, t2 are not cubes in F2n (n even), F22n

(n odd).

This result depends on t1 and t2 and, when b 6= 0, the change of variable x = bt transforms the
equation t2 + bt+ a3 = 0 into the equation x2 + x = a3

b2
. So, it may be useful to recall the following

fact.

Theorem. [26] Let n be any positive integer and β ∈ F2n . A necessary and sufficient condition
for the existence of solutions in F2n of the equation x2 + x = β is that trn(β) = 0. Assuming

that this condition is satisfied, the solutions of the equation are x =
∑n−1

j=1 β
2j (
∑j−1

k=0 c
2k) and

x = 1 +
∑n−1

j=1 β
2j (
∑j−1

k=0 c
2k), where c is any (fixed) element such that trn(c) = 1.
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2.16 Problem “Boolean hidden shift and quantum computings” (unsolved)

2.16.1 Formulation

The following long-standing problem is known. Let f : Fn
2 → F2 be a given Boolean function.

Determine the hidden nonzero shift a ∈ Fn
2 for the function, i.e. a vector such that fa(x) = f(x⊕a)

for all x ∈ Fn
2 . And do it having a limited access to an oracle for the shifted Boolean function fa

with unknown shift a (i. e. a black box, which computes the function f(a ⊕ x) for a given vector
x). Such a problem is called the Boolean hidden shift problem (BHSP).

In order to solve this problem on a quantum computer, an oracle that computes the shifted
function in the phase is used. This oracle can be implemented using only one query to an oracle
that computes the function in a register. The phase oracle is a unitary operator defined by its
action on the computational basis: Ofa : |x〉 7→ (−1)f(x⊕a)|x〉, where |x〉 is the index register. The
quantum query complexity is the minimum number of oracle Ofa accesses needed in the worst
case to solve the problem.

There are two classes of Boolean functions for which the quantum query complexity is minimal
and maximal respectively:

• for any bent function, i. e. a function in even number of variables that is on the maximal
possible Hamming distance from the set of all affine functions, one quantum query suffices to
solve the problem exactly [21];
• for any delta function, i. e. f(x) = δx,x0 for some x0 ∈ Fn

2 , the quantum query complexity is
Θ
(
2n/2

)
, which is equivalent to Grover’s search [14, 3].

For any Boolean function f in n variables Q(BHSPf ) = O(2n/2), where Q(BHSPf ) is the
bounded error quantum query complexity of the BHSP for f . Moreover, it holds [9]

Q (BHSPf ) 6
π

4

2n/2√
wt(f)

+O
(√

wt(f)
)
,

when 1 6 wt(f) 6 2n−1, where wt(f) is the Hamming weight of f .
The problem to solve is the following: identify natural classes of Boolean functions in

even number of variables lying between the two extreme cases of bent and delta functions and
characterize the quantum query complexity of the BHSP for these functions [9].

2.16.2 Solution

The Boolean hidden shift problem is a particular non-injective case of the well known Hidden Shift
problem. There were no complete solutions for this problem. Some attempts to use known re-
sults from quantum computation including quantum certificate complexity were made by Andrey
Kalachev, Danil Cherepanov, and Alexey Radaev team (Bauman Moscow State Technical Univer-
sity), but no detailed descriptions of classes of Boolean functions with query complexity of the
BHSP distinct from two known extremal cases were given.

2.17 Problem “Useful Proof-of-work for blockchains” (unsolved)

2.17.1 Formulation

Proof-of-work system is one of the key parts of modern blockchain-based platforms implementa-
tions, like cryptocurrency Bitcoin or Ethereum. Proof-of-work means that the user is required
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to perform some work in order to request some service from the system, e. g. to send an e-mail or
to create a new block of transactions for the blockchain.

For example, in the Bitcoin system, if some user wants to create a block of transactions and add
it to the chain, the hash value of his block must satisfy certain conditions, which can be achieved
by iterating special variable X inside the block many times and checking the resulting hash value
on every iteration.

What is important about the problem in a proof-of-work system, is that

• It is known that the solution for the problem exists, and it is also known how many iterations
(on average) are required to find it, using best known algorithm A;
• There are no algorithms for solving the problem, that perform significantly better than A; it

is believed also that such algorithms will not be found soon;
• Problem depends on some input data I, so you can not find solutions for the problem in

advance (before input I is known) and then use these solutions without performing any work;
• Given a problem and a solution to it, it is easy to verify that provided solution is correct.

Unfortunately, solving the problem of finding specific hash values (used in Bitcoin and Ethereum)
does not yield any information that is useful outside the system, therefore tremendous amounts of
calculations performed to solve the problem are wasted.

Some other implementations of proof-of-work system solve this issue. For example, solutions of
proof-of-work problem used in cryptocurrency Primecoin give us special chains of prime numbers,
useful for scientific research.

Your task is to construct a problem P that can be used in a proof-of-work system, such that
information obtained in the proccess of solving it can be useful outside the system. More formally:

• P is, in fact, a family of problems, parametrized by two variables: I (input data, you can
assume that I is a 256 bit string, or introduce other sensible formats), and C (complexity,
e. g. some positive integer). For fixed input and complexity, P(I, C) is a problem that can
be solved by using some algorithm A (should be provided in your solution to this task). It
should not be possible to find a provable solution for the problem P(I, C) if I is not known;
• Average time T (amount of computational steps or iterations) required to find a solution

of P(I, C) using algorithm A is known (assuming input data I is chosen randomly and
uniformly), and depends on C, so T = T (C), and T (C) can be made very small, infeasibly
large, or something in-between by adjusting complexity variable C;
• It should be easy to verify whether any provided solution is correct or not;
• Any kind of proof that there are likely no significantly better algorithms for solving P than

the given algorithm A, is desirable. For example, proof that proposed problem is NP-hard,
or any other considerations;
• You should describe how information obtained in the process of solving P can be useful

outside of the proof-of-work system.

For example, in the Bitcoin system, P(I, C) is a problem of finding an integer X such that if
we apply SHA-256 hash function to the pair (I,X) twice, the resulting hash value, represented as
an integer, will not be greater than C. Here C is a nonnegative integer, defining complexity of
the problem, and I — a block header, containing information about all transactions included in it,
along with some other information — is an input.

2.17.2 Solution

There were no complete solutions for this problem. Many contestants proposed using NP-hard
problems for proof-of-work, but no detailed descriptions how to convert a hard problem into a
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proof-of-work were provided. In some solutions input data were not linked with the problem. In
other solutions the condition of “easy verifiability” of the solution to the problem was not satisfied:
it is not easy to check an answer “no” for an NP-hard decision problem.

An interesting approach for constructing useful proof-of-work was proposed by Carl Löndahl
(Sweden). Suppose that we ask a user to solve two problems, say P1 and P2. Problem P1 is a
regular hash-seeking problem, like the one that is used in Bitcoin. It is easy to link an input
with such a problem in order to adjust its difficulty. Problem P2 is some problem based on an
NP-hard problem, and P2 input is based on the solution of P1. P2 can have larger variance in time
complexity, but we can make average time complexity be dominated by P1, thus keeping overall
proof-of-work time consumption more consistent. At the same time, we will be obtaining solutions
for some NP-hard problems in the process of obtaining proof-of-work.

3 Winners of the Olympiad

Here we list information about the winners of NSUCRYPTO’2017 (Tables 5, 6, 7, 8, 9, 10).

Figure 4: Awarding ceremony at Novosibirsk State University, December 2017.

Figure 5: The NSUCRYPTO winners of different years.
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Table 5: Winners of the first round in school section A (“School Student”)

Place Name Country, City School Scores

1 Alexander Grebennikov Russia, Saint Petersburg Presidential PML 239 22

1 Ivan Baksheev Russia, Novosibirsk Gymnasium 6 21

2 Alexander Dorokhin Russia, Saint Petersburg Presidential PML 239 18

3 Vladimir Schavelev Russia, Novosibirsk SESC NSU 17

3 Borislav Kirilov Bulgaria, Sofia FPMG 17

Diploma Ana Kapros Romania, Rm Valcea National College Mircea cel Batran 10

Diploma Filip Dashtevski Macedonia, Kumanovo Yahya Kemal College 10

Diploma Andrei Razvan Romania, Craiova “Fratii Buzesti” National College 10

Diploma Stefan Zaharia Romania, Vaslui Lyceum Mihail Kogalniceanu 9

Diploma Ilia Krytsin Russia, Novosibirsk SESC NSU 9

Diploma Grigorii Popov Russia, Novosibirsk SESC NSU 8

Diploma Bogdan Circeanu Romania, Craiova “Fratii Buzesti” National College 8

Diploma Lenart Bucar Slovenia, Grosuplje Gymnasium Bezigrad 7

Diploma Maxim Desyatkov Russia, Kuibyshev SESC NSU 7

Table 6: Winners of the first round, section B (in the category “University Student”)

Place Name Country, City University Scores

1 Roman Lebedev Russia, Novosibirsk Novosibirsk State University 20

2 Robert Spencer United Kingdom, Cambridge University of Cambridge 15

3 Nikita Odinokih Russia, Novosibirsk Novosibirsk State University 14

3 Alexey Miloserdov Russia, Novosibirsk Novosibirsk State University 14

3 Dheeraj M Pai India, Chennai Indian Institute of Technology, Madras 13

Diploma Alexey Solovev Russia, Moscow Lomonosov Moscow State University 10

Diploma Khai Hanh Tang Vietnam, Ho Chi Minh University of Science 9

Diploma Evgeniy Manaka Russia, Moscow Bauman Moscow State Technical University 9

Diploma Andrey Klyuev Russia, Moscow National Research Nuclear University MEPhI 8

Diploma Nikolay Altukhov Russia, Moscow Bauman Moscow State Technical University 8

Diploma Vladimir Bushuev Russia, Korolev Bauman Moscow State Technical University 8

Diploma Roman Chistiakov Russia, Moscow Bauman Moscow State Technical University 8

Diploma Mikhail Sorokin Russia, Moscow National Research Nuclear University MEPhI 8

Table 7: Winners of the first round, section B (in the category “Professional”)

Place Name Country, City Organization Scores

1 Alexey Udovenko Luxembourg, Luxembourg University of Luxembourg 28

2 Henning Seidler Germany, Berlin TU Berlin 16

2 George Beloshapko Switzerland, Zürich Google 15

3 Daniel Malinowski Poland, Warsaw University of Warsaw 12

Diploma Evgeniya Ishchukova Russia, Taganrog Southern Federal University 8

Diploma Egor Kulikov Germany, Munich dxFeed Solutions GmbH 8
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Table 8: Winners of the second round (in the category “School Student”)

Place Names Country, City School Scores

Diploma Filip Dashtevski, Gorazd Dimitrov Macedonia, Kumanovo Yahya Kemal College 8

Diploma Amalia Rebegea, Gabi Tulba-Lecu, Stefan Manolache Romania, Bucharest CNI “Tudor Vianu” 6

Table 9: Winners of the second round (in the category “University student”)

Place Name Country, City University Scores

1 Roman Lebedev, Vladimir Sitnov,
Ilia Koriakin

Russia, Novosibirsk Novosibirsk State University 50

2 Alexey Miloserdov, Nikita Odinokih,
Saveliy Skresanov

Russia, Novosibirsk Novosibirsk State University 46

2 Maxim Plushkin, Ivan Lozinskiy,
Azamat Miftakhov

Russia, Moscow Lomonosov Moscow State
University

44

3 Irina Slonkina Russia, Moscow National Research Nuclear
University MEPhI

38

3 Ngoc Ky Nguyen, Thanh Nguyen Van,
Phuoc Nguyen Ho Minh

Vietnam,
Ho Chi Minh City

Bach Khoa University, Ho Chi
Minh University of Technology

34

3 Nikolay Altukhov, Roman Chistiakov,
Evgeniy Manaka

Russia, Moscow Bauman Moscow State Technical
University

32

Diploma Mikhail Sorokin, Andrey Klyuev,
Anatoli Makeyev

Russia, Moscow National Research Nuclear
University MEPhI

26

Diploma Oskar Soop, Joosep Jger, Andres Unt Estonia, Tartu University of Tartu 26

Diploma Andrey Kalachev, Danil Cherepanov,
Alexey Radaev

Russia, Moscow Bauman Moscow State Technical
University

24

Diploma Dianthe Bose India, Chennai Chennai Mathematical Institute 23

Diploma Mikhail Kotov, Oleg Zakharov,
Sergey Batunin

Russia, Tomsk Tomsk State University 20

Table 10: Winners of the second round (in the category “Professional”)

Place Names Country, City Organization Scores

1 Alexey Udovenko Luxembourg,
Luxembourg

SnT, University of Luxembourg 63

2 Daniel Malinowski, Michal Kowalczyk Poland, Warsaw University of Warsaw, Dragon Sector 49

3 Alexey Ripinen, Oleg Smirnov,
Peter Razumovsky

Russia, Saratov Saratov State University 40

3 Duc Tri Nguyen, Dat Bui Minh Tien,
Quan Doan

Vietnam,
Ho Chi Minh city

CERG at George Mason University,
Meepwn CTF Team, MeePwn

37

3 Carl Londahl Sweden,
Karlskrona

Independent researcher 31

Diploma Anna Taranenko Russia,
Novosibirsk

Sobolev Institute of Mathematics 29

Diploma Kristina Geut, Sergey Titov Russia,
Yekaterinburg

Ural State University of Railway
Transport

28

Diploma Victoria Vlasova, Mikhail Polyakov,
Mikhail Tsvetkov

Russia, Moscow Bauman Moscow State Technical
University

26

Diploma Harry Lee, Samuel Tang Hong Kong,
Hong Kong

Hong Kong University of Science and
Technology

20

Diploma Henning Seidler, Katja Stumpp Germany, Berlin Berlin Technical University 20
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