Problem 3.《A modification of PRESENT»

Peter decided to modify the wellknown cipher PRESENT.
At first we give a description of PRESENT according to the paper PRESENT: An Ultra-Lightweight Block Cipher
It is a classical Substitution-Permutation network (SP-network) that consists of 31 rounds with the block size equal to 64 bits and the key size equal to 80 bits. Each of the 31 rounds consists of an XOR operation to introduce a round key K_{i} for $1 \leqslant i \leqslant 32$, where K_{32} is used for post-whitening, a non-linear substitution layer, and a linear bitwise permutation P. The non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel in each round.
addRoundKey. Given current state $b_{63} \ldots b_{0}$ and round key
 $K_{i}=k_{63}^{i} k_{62}^{i} \ldots k_{0}^{i}$ for $1 \leqslant i \leqslant 32$, addRoundKey consists of the operation $b_{j} \rightarrow b_{j} \oplus k_{j}^{i}$ for $0 \leqslant j \leqslant 63$.
sBoxlayer. The S-box is a permutation from \mathbb{F}_{2}^{4} to \mathbb{F}_{2}^{4}. For sBoxLayer the current state $b_{63} \ldots b_{0}$ is considered as sixteen 4 -bit words $w_{15} \ldots w_{0}$ where $w_{i}=b_{4 \cdot i+3}\left\|b_{4 \cdot i+2}\right\| b_{4 \cdot i+1} \| b_{4 \cdot i}$ for $0 \leqslant i \leqslant 15$ and the output nibble $S\left[w_{i}\right]$ provides the updated state values in the obvious way. The action of this box in hexadecimal notation is given by the following table.

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | e e f (

pLayer. The bit permutation is given by the table. Bit i of state is moved to bit position $P(i)$.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$P(i)$	0	16	32	48	1	17	33	49	2	18	34	50	3	19	35	51	4	20	36	52	5	21	37	53	6	22	38	54	7	23	39	55
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
$P(i)$	8	24	40	56	9	25	41	57	10	26	42	58	11	27	43	59	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63

The key schedule. The user-supplied key is stored in a key register K and represented as $\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{0}$. At round i the 64 -bit round key $K_{i}=k_{63} k_{62} \ldots k_{0}$ consists of the 64 leftmost bits of the current contents of register K . Thus at round i we have that: $K_{i}=k_{63} k_{62} \ldots k_{0}=\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{16}$. After extracting the round key K_{i}, the key register $\mathrm{K}=\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{0}$ is updated as follows. The key register is rotated by 61 bit positions to the left, then the left-most four bits $\mathrm{k}_{79} \mathrm{k}_{78} \mathrm{k}_{77} \mathrm{k}_{76}$ are passed through the PRESENT S-box, and finally the round_counter value i is XORed with bits $\mathrm{k}_{19} \mathrm{k}_{18} \mathrm{k}_{17} \mathrm{k}_{16} \mathrm{k}_{15}$ of K with the least significant bit of round_counter on the right.

What Peter has modified:

- In sBoxlayer, he changed S-box to the following

$$
\begin{array}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { a } & \text { b } & \text { c } & \text { d } & \text { e } & \text { f } \\
\hline S(x) & \text { c } & 8 & \text { d } & 1 & \text { e } & \text { a } & 7 & \text { b } & 4 & 0 & 5 & 9 & 6 & 2 & \text { f } & 3 \\
\hline
\end{array}
$$

- In pLayer, he applied permutation P^{3} instead of P.
- In the key schedule, he rotated the key register by 16 bit positions to the left instead of 61 . And he used his new S-box from sBoxlayer here.
- Finally, he reduced the number of rounds to 15 .

As a result Peter got the new cipher Peter-PRESENT. Below you can find examples of test vectors for Peter-PRESENT that are given as integers in hexadecimal notation.

plaintext	key	ciphertext
0000000000000000	00000000000000000000	f778777b0774f772
fffffffffffffff	0000000000000000000	888708847883888 d
0000000000000000	ffffffffffffffffffff	$7 f f 8 f f f b 0 f f c 7 f f a$
fffffffffffffffff	ffffffffffffffffffff	$00078004700 b 0005$

Peter states that his modification is rather good. But his friend Mark does not think so. He claims that it is enough to get only two pairs «plaintext-ciphertext» $\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right)$, where $C_{i}=$ Peter-PRESENT $\left(P_{i}, K\right), i=1,2$, and K is the unknown key, for reading any message C encrypted with this key K in the ECB mode.

Peter decides to argue with Mark and presents the following pairs, where P_{1} and P_{2} forms the message ! NSUCRYPTO-2015! (ASCII codes of letters and little-endian order of bytes are used to form 64 -bits integers as the inputs $b_{63} b_{62} \ldots b_{0}$):

$$
\begin{aligned}
& \text { !NSUCRYP } \rightarrow P_{1}=5059524355534 \mathrm{e} 21 \quad \rightarrow \quad C_{1}=2 \mathrm{ddbf038b} 201448 \mathrm{f} \\
& \text { TO-2015! } \rightarrow P_{2}=21353130322 \mathrm{~d} 4 \mathrm{f} 54 \quad \rightarrow \quad C_{2}=\mathrm{d} 4 \mathrm{bf} 134 \mathrm{bd57f} 4 \mathrm{df} 2
\end{aligned}
$$

And he asks Mark to read the secrete message whose ciphertext C is:

$$
C=\begin{array}{lll}
\text { 37aa471c953defe1 } & \text { 91aa595c0236edc9 } & \text { 80f10a020c33e5cb } \\
\text { ddf14e15923df8dc } & \text { 8cf8470d027af1db } & \text { 9caa061e9537ead1 } \\
\text { 92e10a1e072ea2c0 } & \text { d1f1501e9b27f2c3 } & \text { 94e750140134e386 } \\
\text { 92f6595b093de3d2 } & \text { 99ec435b0235ebdc } & \text { 83ef4b099b37f886 } \\
\text { 9eef461e4f76eecf } & \text { 9eaa4912093df8d2 } & \text { ddf15e129231f8c7 } \\
\text { 89ec45184f3ee4cf } & \text { 94e25e5b9c36eddc } & \text { 87e55a0b9221a2d2 } \\
\text { ddae471d0e36a2d2 } & \text { 9aec4b159533efca } & \text { 98e5495b0b34eb86 } \\
\text { 9cf643180e34ffc3 } & \text { 89aa4c124f21e4c9 } & \text { ddf6594ad57aefce } \\
\text { dbfb500e9b34efc5 } & &
\end{array}
$$

Can Mark win the argument?

