Problem 1. «A secret sharing»

Special Prize from the Program Committee!

Alice, Bob and Caroline are going to create a secret sharing system. They choose some subset $M \subseteq \mathbb{F}_{2}^{n}$ and want to share a secret element u from M using the following way: the secret is represented as $x \oplus y \oplus z$ where x, y, z are different elements of $\bar{M}=\mathbb{F}_{2}^{n} \backslash M$; Alice, Bob and Caroline will store x, y and z correspondingly. Here \mathbb{F}_{2}^{n} is the set of all binary vectors of length n.

To use the system, the sets M and \bar{M} should satisfy the following conditions:

1) each element $u \in M$ can be represented as $u=x \oplus y \oplus z$, where x, y, z are different elements of \bar{M};
2) for all different $x, y, z \in \bar{M}$ it is right $x \oplus y \oplus z \in M$.

Help them to implement the system suggesting an explicit construction of the set M for an arbitrary n.

Problem 2. «The machine DH-d»

Let G be a cyclic group of a large prime order q and g be a generator of G. Tom designed the machine DH-d that on input $\left(g, g^{x}\right)$ outputs $g^{x^{d}}$. Here g^{x} is an arbitrary element of G and d is a small fixed positive integer.

Use the machine DH-d to solve the Diffie - Hellman problem, that is, find $g^{x y}$ from $\left(g, g^{x}, g^{y}\right)$. Suggest a solution with the minimal requests to the machine.

Problem 3.《A modification of PRESENT»

Peter decided to modify the wellknown cipher PRESENT.
At first we give a description of PRESENT according to the paper PRESENT: An Ultra-Lightweight Block Cipher
It is a classical Substitution-Permutation network (SP-network) that consists of 31 rounds with the block size equal to 64 bits and the key size equal to 80 bits. Each of the 31 rounds consists of an XOR operation to introduce a round key K_{i} for $1 \leqslant i \leqslant 32$, where K_{32} is used for post-whitening, a non-linear substitution layer, and a linear bitwise permutation P. The non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel in each round.
addRoundKey. Given current state $b_{63} \ldots b_{0}$ and round key
 $K_{i}=k_{63}^{i} k_{62}^{i} \ldots k_{0}^{i}$ for $1 \leqslant i \leqslant 32$, addRoundKey consists of the operation $b_{j} \rightarrow b_{j} \oplus k_{j}^{i}$ for $0 \leqslant j \leqslant 63$.
sBoxlayer. The S-box is a permutation from \mathbb{F}_{2}^{4} to \mathbb{F}_{2}^{4}. For sBoxLayer the current state $b_{63} \ldots b_{0}$ is considered as sixteen 4 -bit words $w_{15} \ldots w_{0}$ where $w_{i}=b_{4 \cdot i+3}\left\|b_{4 \cdot i+2}\right\| b_{4 \cdot i+1} \| b_{4 \cdot i}$ for $0 \leqslant i \leqslant 15$ and the output nibble $S\left[w_{i}\right]$ provides the updated state values in the obvious way. The action of this box in hexadecimal notation is given by the following table.

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | e e f (

pLayer. The bit permutation is given by the table. Bit i of state is moved to bit position $P(i)$.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
$P(i)$	0	16	32	48	1	17	33	49	2	18	34	50	3	19	35	51	4	20	36	52	5	21	37	53	6	22	38	54	7	23	39	55
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
$P(i)$	8	24	40	56	9	25	41	57	10	26	42	58	11	27	43	59	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63

The key schedule. The user-supplied key is stored in a key register K and represented as $\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{0}$. At round i the 64 -bit round key $K_{i}=k_{63} k_{62} \ldots k_{0}$ consists of the 64 leftmost bits of the current contents of register K . Thus at round i we have that: $K_{i}=k_{63} k_{62} \ldots k_{0}=\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{16}$. After extracting the round key K_{i}, the key register $\mathrm{K}=\mathrm{k}_{79} \mathrm{k}_{78} \ldots \mathrm{k}_{0}$ is updated as follows. The key register is rotated by 61 bit positions to the left, then the left-most four bits $\mathrm{k}_{79} \mathrm{k}_{78} \mathrm{k}_{77} \mathrm{k}_{76}$ are passed through the PRESENT S-box, and finally the round_counter value i is XORed with bits $\mathrm{k}_{19} \mathrm{k}_{18} \mathrm{k}_{17} \mathrm{k}_{16} \mathrm{k}_{15}$ of K with the least significant bit of round_counter on the right.

What Peter has modified:

- In sBoxlayer, he changed S-box to the following

$$
\begin{array}{|c||c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { a } & \text { b } & \text { c } & \text { d } & \text { e } & \text { f } \\
\hline S(x) & \text { c } & 8 & \text { d } & 1 & \text { e } & \text { a } & 7 & \text { b } & 4 & 0 & 5 & 9 & 6 & 2 & \text { f } & 3 \\
\hline
\end{array}
$$

- In pLayer, he applied permutation P^{3} instead of P.
- In the key schedule, he rotated the key register by 16 bit positions to the left instead of 61 . And he used his new S-box from sBoxlayer here.
- Finally, he reduced the number of rounds to 15 .

As a result Peter got the new cipher Peter-PRESENT. Below you can find examples of test vectors for Peter-PRESENT that are given as integers in hexadecimal notation.

plaintext	key	ciphertext
0000000000000000	00000000000000000000	f778777b0774f772
fffffffffffffff	0000000000000000000	888708847883888 d
0000000000000000	ffffffffffffffffffff	$7 f f 8 f f f b 0 f f c 7 f f a$
fffffffffffffffff	ffffffffffffffffffff	$00078004700 b 0005$

Peter states that his modification is rather good. But his friend Mark does not think so. He claims that it is enough to get only two pairs «plaintext-ciphertext» $\left(P_{1}, C_{1}\right),\left(P_{2}, C_{2}\right)$, where $C_{i}=$ Peter-PRESENT $\left(P_{i}, K\right), i=1,2$, and K is the unknown key, for reading any message C encrypted with this key K in the ECB mode.

Peter decides to argue with Mark and presents the following pairs, where P_{1} and P_{2} forms the message ! NSUCRYPTO-2015! (ASCII codes of letters and little-endian order of bytes are used to form 64 -bits integers as the inputs $b_{63} b_{62} \ldots b_{0}$):

$$
\begin{aligned}
& \text { !NSUCRYP } \rightarrow P_{1}=5059524355534 \mathrm{e} 21 \quad \rightarrow \quad C_{1}=2 \mathrm{ddbf038b} 201448 \mathrm{f} \\
& \text { TO-2015! } \rightarrow P_{2}=21353130322 \mathrm{~d} 4 \mathrm{f} 54 \rightarrow C_{2}=\mathrm{d} 4 \mathrm{bf} 134 \mathrm{bd57f} 4 \mathrm{df} 2
\end{aligned}
$$

And he asks Mark to read the secrete message whose ciphertext C is:

$$
C=\begin{array}{lll}
\text { 37aa471c953defe1 } & \text { 91aa595c0236edc9 } & \text { 80f10a020c33e5cb } \\
\text { ddf14e15923df8dc } & \text { 8cf8470d027af1db } & \text { 9caa061e9537ead1 } \\
\text { 92e10a1e072ea2c0 } & \text { d1f1501e9b27f2c3 } & \text { 94e750140134e386 } \\
\text { 92f6595b093de3d2 } & \text { 99ec435b0235ebdc } & \text { 83ef4b099b37f886 } \\
\text { 9eef461e4f76eecf } & \text { 9eaa4912093df8d2 } & \text { ddf15e129231f8c7 } \\
\text { 89ec45184f3ee4cf } & \text { 94e25e5b9c36eddc } & \text { 87e55a0b9221a2d2 } \\
\text { ddae471d0e36a2d2 } & \text { 9aec4b159533efca } & \text { 98e5495b0b34eb86 } \\
\text { 9cf643180e34ffc3 } & \text { 89aa4c124f21e4c9 } & \text { ddf6594ad57aefce } \\
\text { dbfb500e9b34efc5 } & &
\end{array}
$$

Can Mark win the argument?

Problem 4. «Guess the cipher»

There is a cipher NSUCRYPTO-2015 that encrypts messages written in 26letters English alphabet from A to Z. A message length is not more than 50 letters.

Can you recognize what is the cipher algorithm if you can get the ciphertext for any your correct input message here?

Problem 5. «Hypothesis»

Special Prize from the Program Committee!

Prove the following hypothesis or find a counterexample to it.
Hypothesis. For all $n \geqslant 2$ there exists a Boolean function $g: \mathbb{F}_{2}^{n-1} \rightarrow \mathbb{F}_{2}$ in disjunctive normal form, where every variable appears not more than one time, such that a binary sequence $\left\{u_{1}, u_{2}, \ldots\right\}$ produced for all $t \geqslant 1$ from the initial state u_{1}, \ldots, u_{n} by the following rule

$$
u_{t+n}=u_{t} \oplus g\left(u_{t+1}, u_{t+2}, \ldots, u_{t+n-1}\right)
$$

has the maximal possible period equal to 2^{n}.
Remark I. A Boolean function g in m variables is given in disjunctive normal form if $g\left(x_{1}, \ldots, x_{m}\right)=A_{1} \vee \ldots \vee A_{k}$, where A_{i} is a conjunction of variables or their negations, $i=1, \ldots, k$.

Remark II. In the table, the functions g that confirm the hypothesis for small n are presented.

n	the examples of $g\left(x_{1}, \ldots, x_{n-1}\right)$
2	1
3	$x_{1} \vee \bar{x}_{2}$
4	$x_{1} \vee \bar{x}_{2} \bar{x}_{3}, \quad x_{1} \vee x_{2} \vee \bar{x}_{3}$
5	$x_{2} \vee \bar{x}_{1} \bar{x}_{3} \bar{x}_{4}, \quad x_{1} \vee x_{2} x_{3} \vee \bar{x}_{4}$

Problem 6. «A binary tape»

A cipher machine works with a binary infinite tape that starts with an input word of length n and all its other elements are zero. The machine encrypts an input word and writes the result instead of it.

The cipher machine can do two operations:

1) copy any symbol of the tape to other position;
2) apply some fixed one-to-one function $S: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}^{m}$ to the first m symbols, where $\mathbb{F}_{2}=\{0,1\}$.

Find the conditions for S such that the machine can perform any bijective mapping of words of length n.

Examples of operations.

1) For instance, the machine can copy the third symbol to the fifth place:

1	1	$\mathbf{1}$	0	$\mathbf{0}$	0	1	1	1	\ldots

the result will be

1	1	1	0	1	0	1	1	1	\ldots

2) Let m be 3 and $S(x, y, z)=(x, y, x \oplus z)$; applying S to the first three symbols:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	1	1	1	\ldots

the result will be

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0	0	0	1	1	1	\ldots

Problem 7. «Palindrome cipher»

The company Palindrome had been using the block cipher DES to encrypt its documents for 12 years since the foundation until its engineers took a decision to use the block cipher Blowfish in addition to DES. It was in 2005 year. So, up to now all its documents are encrypted by DES and then the result is also encrypted by Blowfish. The ciphering is conducted in EBC mode. Both ciphers DES and Blowfish have the same key and block lengths equal to 64 bits. The descriptions of these ciphers can be found here: DES and Blowfish.

As a result of information leakage, that occurred during the celebration of the anniversary of the company, the text of a greeting card leaked to the Internet. The text of the greeting card was

Dear colleagues! Congratulations for our wonderful journey of 20 years of success and we hope the same for the future also!

And the ciphertext of that greeting card was

$$
\begin{array}{rlll}
C= & 83 c 100497 \mathrm{~b} 13525 \mathrm{e} & \text { fc8d3201d58ab9ed } & \text { f6820425912ce184 } \\
& 23034 \mathrm{db7b4408629} & 4 \mathrm{df} 36 \mathrm{ca87ad39f4a} & 99277 \mathrm{e} 6 \mathrm{f} 1 \mathrm{e} 217 \mathrm{dfd} \\
& \text { f2eab13d1161e849 } & \text { Ofe72e9b98fc1e8a } & 0 \text { aa5680e3b4022cb } \\
& 4 \mathrm{e} 44 \mathrm{c} 8745 \mathrm{afae} 37 \mathrm{f} & \text { bd5d6d49292bd1b2 } & 9386 \mathrm{f} 2 \mathrm{f} 383061 \mathrm{bfd} \\
& \text { ae8fca32e6745687 } & \text { 565d353f3bbb1204 } & \text { aa79742f7ab55fb1 }
\end{array}
$$

Could you decrypt the following ciphertext that was intercepted in the company network few weeks ago:

$$
\begin{array}{rlllll}
C= & c f 414505 b 7 d 3 a e e 3 & 36 f 48 a e 753 e c 799 c & \text { fb49aaea17fa2a38 } & \text { 2992ed164e9622aa } \\
& \text { 0b64549dad59a803 } & \text { Ob93be9baf9339e6 } & \text { fe9780d39168bdff } & \text { 10d77405d1b51a6a } \\
& \text { 5475ddf991ef3ad9 } & \text { 85a6c0c451b75da5 } & \text { aa4c59ec0c40af09 } & \text { 852b70cebeb127b9 } \\
& 43 c 362 d c c b e b f 21 e & \text { dbb2b086aba67212 } & \text { 1c92e2f327a03b05 } & \text { b1affd236d8e0f9c } \\
& \text { 62386237b27597b4 } & \text { cbe8ec78b07f4ce6 } & &
\end{array}
$$

It is known that an encryption 128-bit key is changed dynamically every day according to certain rules and it is always a sequence of 128 bits where each of 16 bytes is given by ASCII codes of figures from 0 to 9 . The first 64 bits form a DES key and the other 64 bits form a Blowfish key.

Here we present some technical information of the company encryption. Below you can find examples of test vectors for combination of both ciphers DES and Blowfish. They are given as 64 -bit integers $b_{63} b_{62} \ldots b_{0}$ in hexadecimal notation.

plaintext	DES key	Blowfish key	ciphertext
0000000000000000	0000000000000000	0000000000000000	$561543527 d 054 a d 0$
0000000000000000	000000000000000	ffffffffffffffff	df27adaec8337f57
0000000000000000	ffffffffffffffff	000000000000000	$11148646 a f 0 \mathrm{dB2e9}$
ffffffffffffffff	000000000000000	ffffffffffffffff	18708bdc3837046f
6c6f632072616544	3837363534333231	3132333435363738	72e66b26309de78c

To form 64 -bit integer $b_{63} b_{62} \ldots b_{0}$ each consequent 8 symbols of an original text (or key) are transformed into their ASCII codes and little-endian order of bytes is used.

For example, let us encrypt the message Dear colleagues! using the keys 12345678 and 87654321 for DES and Blowfish correspondingly. We divide it into two blocks of 8 symbols Dear col and leagues! and encrypt them separately:

$$
\begin{aligned}
\text { Dear col } \rightarrow P_{1}= & 6 \mathrm{c} 6 \mathrm{f} 632072616544 \rightarrow \text { DES } \rightarrow T_{1}=\mathrm{cb32b} 921 \mathrm{efe} 674 \mathrm{e} 5 \rightarrow \\
& \rightarrow \text { Blowfish } \rightarrow C_{1}=72 \mathrm{e} 66 \mathrm{~b} 26309 \mathrm{de} 78 \mathrm{c} \\
\text { leagues }: \rightarrow P_{2}= & 217365756761656 \mathrm{c} \rightarrow \text { DES } \rightarrow T_{2}=\mathrm{f3d9c5f0cf2e9e8f} \mathrm{\rightarrow} \rightarrow \\
& \rightarrow \text { Blowfish } \rightarrow C_{2}=2 \text { d9f9fd83b15ae75 }
\end{aligned}
$$

Thus, the ciphertext is 72e66b26309de78c 2d9f9fd83b15ae75.

Problem 8. «High-nonlinear functions»

One of interesting classes of one-to-one vectorial Boolean functions of the form $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$, where n is even, is the set of functions such that $F^{-1}=F$. Does this class contain a function with nonlinearity not less than $2^{n-1}-2^{n / 2}$?

Remark. Recall several definitions.

- A vectorial Boolean function $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ can be represented as the set of its n coordinate Boolean functions: $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, where $f_{1}, \ldots, f_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$;
- the Hamming distance $\operatorname{dist}(f, g)$ between two Boolean function $f, g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is equal to the number of vectors $x \in \mathbb{F}_{2}^{n}$ such that $f(x) \neq g(x)$.
- Nonlinearity $n l_{F}$ of F is equal to

$$
\min _{b \in \mathbb{F}_{2}^{n}, b \neq 0} \min _{a \in \mathbb{F}_{2}^{n}, c \in \mathbb{F}_{2}} \operatorname{dist}\left(b \cdot F, \ell_{a, c}\right)
$$

where $b \cdot F=b_{1} f_{1} \oplus b_{2} f_{2} \oplus \ldots \oplus b_{n} f_{n}$ and $\ell_{a, c}(x)=a_{1} x_{1} \oplus a_{2} x_{2} \oplus \ldots \oplus a_{n} x_{n} \oplus c$.

Problem 9. «Covering radius - 2»

In order to protect a new block cipher against some attack based on S-box approximations Alice needs to solve the following problem.

Let \mathbb{F}_{2}^{n} be a n-dimensional vector space over the field $\mathbb{F}_{2}=\{0,1\}$. Let $n=2 k$, where k is a positive integer. Evaluate the covering radius and describe the metrical complement of the linear subspace spanned by rows of the following $k \times n$ matrix:

$$
M=\left(\begin{array}{cccccccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & \ldots & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & \ldots & \cdots & 0 & 0 \\
& & & & & & \ddots & \ddots & \ddots & & & \\
0 & \ldots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & \ldots & \cdots & \cdots & \cdots & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Remark I. Recall several definitions and notions. A set $L \subseteq \mathbb{F}_{2}^{n}$ is called a linear subspace if for every $x, y \in L$ the sum $x \oplus y$ is also in L. The Hamming distance $d(x, y)$ between vectors $x, y \in \mathbb{F}_{2}^{n}$ is defined as the number of positions where they differ, i. e. $d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|$. The Hamming distance from a vector y to a subset $X \subseteq \mathbb{F}_{2}^{n}$ is defined as $d(y, X)=\min _{x \in X} d(y, x)$. Since the distance between any two vectors is bounded by n, for an arbitrary subset X there exists the number $d(X)$ such that:

- for every $y \in \mathbb{F}_{2}^{n}$ it holds $d(y, X) \leqslant d(X)$;
- there exists a vector $z \in \mathbb{F}_{2}^{n}$ with $d(z, X)=d(X)$.

This number is called the covering radius of X. Set $\widehat{X}=\left\{z \in \mathbb{F}_{2}^{n} \mid d(z, X)=d(X)\right\}$ is called the metrical complement of X.

Remark II. Let us consider several examples:

- Let X consist of a single vector $x \in \mathbb{F}_{2}^{n}$. It is easy to see that $d(X)=n$ and $\widehat{X}=\{x \oplus \mathbf{1}\}$, where $\mathbf{1}$ is the all-ones vector;
- Let Y be a ball of radius r centered at $x: Y=\left\{y \in \mathbb{F}_{2}^{n} \mid d(x, y) \leqslant r\right\}$. One can verify that $d(Y)=n-r$ and $\widehat{Y}=\{x \oplus \mathbf{1}\}$.

Problem 10. «Bigrams»

Users of a some communication system send messages to each other. Every message is written in English. Eve is a malefactor who intercepts messages in this channel and replaces them with new ones. In detail she does the following: intercepts a message, removes all spaces and punctuation marks from it, splits the message into bigrams starting from the beginning. Then she makes several iterations of destruction of the message. The number of iterations is random.

All bigrams are divided into 3 types:
I. Bigram contains only vowels (i.e. AA, EI, IO, UO, YU, ...).
II. Bigram contains only consonants (i.e. BN, TR, LL, PW, SD, ...).
III. Bigram contains one vowel and one consonant (i.e. QA, EC, HI, KO, ...).

On each iteration Eve takes two random bigrams B_{1} and B_{2} of the different types and removes them from the message, at the same time she adds a new random bigram B_{3} of the third type at the beginning of the message. So, if she chooses bigrams of I and II types (II and III; I and III) she will add an arbitrary bigram of III (I; II) type.

For example, the message CRYPTO TEXT can be transformed by Eve like this:
CRYPTO TEXT \rightarrow (CR) (YP) (TO) (TE) (XT) \rightarrow (OE) (CR) (TO) (TE) \rightarrow (FE) (TO) (TE)
The question is the following. You know that Alice has send to Bob the message
THE MEETING WILL TAKE PLACE AT THREE IN "EEYORE-EAGLE-BEE CREEK InN"
that was intercepted by Eve. She had repeated iterations of destruction until the only one bigram left. Could it be a bigram consisting of one vowel and one consonant?

