Task 4. «Boolean cubes»

Alice has two cubes E_{1} and E_{2} of dimension 3 (see the picture below). Their vertices have labels consisting of three integers; for example, $(1,0,1)$ consists of integers $1,0,1$. Consider an operation A that can be applied for a cube. The operation A contains three steps:

Step 1. Take an arbitrary edge of the cube;
Step 2. Take the number a equal to 1 or -1 ;
Step 3. Add a to an arbitrary position of the first vertex of the chosen edge. Add a to an arbitrary position of the second vertex of the edge.

Is it possible to get the cube E_{2} from the cube E_{1} by applying the operation A as many times as necessary? Give your arguments.

The cube E_{1}

The cube E_{2}

An example of applying an operation. Step 1. Take the edge $((1,0,0) ;(1,1,0))$. Step 2. Let $a=-1$. Step 3. For the vertex $(1,0,0)$ we choose position 2 and for the vertex $(1,1,0)$ we choose position 1 ; after adding the edge $((1,0,0) ;(1,1,0))$ becomes $((1,-1,0) ;(0,1,0))$.

